Hybrid porous hypercrosslinking polyanilines: facile Friedel–Crafts preparation, CO2 capture and Cr(VI) removal properties

  • Wenjie Tang
  • Yue WuEmail author
  • Anhou Xu
  • Tingting Gao
  • Yingqing Wei
  • Guowei ZhouEmail author


In this work, a series of hybrid porous hypercrosslinked polyanilines were successfully synthesized by polyaniline and octavinylsilsesquioxane (OVS) via the Friedel–Crafts alkylation reaction. Compared with N-alkylation reaction, the new synthetic approach circumvents some intractable problems, such as high reaction temperatures and pressures, tedious procedures and limited reactants. The resulting hybrid porous polyanilines had apparent surface areas in the range of 22 ± 5 to 461 ± 20 m2 g− 1, and total pore volumes in the range of 0.08–0.30 cm3 g− 1. The porosity of these polymers can be fine-tuned by varying the mass ratio of OVS to polyaniline. Gas sorption applications reveal that the CO2 adsorption capacity of HPANI-5 was 0.59 mmol g− 1 (2.60 wt%) at 298 K and 1.01 bar. Cr(VI) removal experiments reveal that HPANI-1 possessed the maximum Cr(VI) removal capacity at 308 K and pH 1 with an equilibrium adsorption capacity of 1230 ± 80 mg g− 1. The results suggested that the resulted hypercrosslinking polyanilines had potential to be used as adsorbents for CO2 uptake and Cr(VI) removal.


Hypercrosslinking polyaniline Octavinylsilsesquioxane Friedel–Crafts alkylation reaction Gas sorption 



This research was supported by Joint Funds of Shandong Provincial Natural Science Foundation and Colleges and Universities of Shandong Province (ZR2017LEM013), National Natural Science Foundation of China (Grant Nos. 51372124, 51572134, 51503108), Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province and Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials.

Supplementary material

10934_2019_747_MOESM1_ESM.docx (405 kb)
Supplementary material 1 (DOCX 404 KB)


  1. 1.
    V. Torres-Costa, R.J. Martín-Palma, Application of nanostructured porous silicon in the field of optics. A review. J. Mater. Sci. 45, 2823–2838 (2010)CrossRefGoogle Scholar
  2. 2.
    J.S.M. Lee, M.E. Briggs, T. Hasell, A.I. Cooper, Hyperporous carbons from hypercrosslinked polymer. Adv. Mater. 28, 9804–9810 (2016)CrossRefGoogle Scholar
  3. 3.
    D.C. Wu, F. Xu, B. Sun, R.W. Fu, H.K. He, K. Matyjaszewski, Design and preparation of porous polymers. Chem. Rev. 112, 3959–4015 (2012)CrossRefGoogle Scholar
  4. 4.
    E.M. Gallego, M.T. Portilla, C. Paris, A. León-Escamilla, M. Boronat, M. Moliner, A. Corma, Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355, 1051–1054 (2017)CrossRefGoogle Scholar
  5. 5.
    T.A. Saleh, M. Naeemullah, A. Tuzen, Sari, Polyethylenimine modified activatedcarbon as novel magnetic adsorbent for the removal of uranium from aqueous solution. Chem. Eng. Res. Des. 117, 218–227 (2017)CrossRefGoogle Scholar
  6. 6.
    A.V. assilakopoulou, V. Georgakilas, N. Vainos, I. Koutselas, Successful entrapment of carbon dots within flexible free-standing transparent mesoporous organic-inorganic silica hybrid films for photonic applications. J. Phys. Chem. Solids 103, 190–196 (2017)CrossRefGoogle Scholar
  7. 7.
    T.R. Zhan, S.S. Lu, H.Q. Rong, W.G. Hou, H.N. Teng, Y.H. Wen, Metal-organic-framework-derived Co/nitrogen-dopedporous carbon composite as an effective oxygen reduction electrocatalyst. J. Mater. Sci. 53, 6774–6784 (2018)CrossRefGoogle Scholar
  8. 8.
    Y. Wu, L.G. Li, W.Y. Yang, S.Y. Feng, H.Z. Liu, Hybrid nanoporous polystyrene derived from cubic octavinylsilsesquioxane and commercial polystyrene via the Friedel-Crafts reaction. RSC. Adv. 5, 12987–12993 (2015)CrossRefGoogle Scholar
  9. 9.
    G.Y. Li, Z.G. Wang, Microporous polyimides with uniform pores for adsorption and separation of CO2 gas and organic vapors. Macromolecules. 46, 3058–3066 (2013)CrossRefGoogle Scholar
  10. 10.
    Z.H. Tian, J.J. Huang, Z.L. Zhang, G.L. Shao, A. Liu, S.G. Yuan, Organic-inorganic hybrid microporous polymers based on Octaphenylcyclotetrasiloxane: synthesis, carbonization and adsorption for CO2, Micropor. Mesopor. Mat. 234, 130–136 (2016)CrossRefGoogle Scholar
  11. 11.
    W. Kuang, Y.N. Liu, J.H. Huang, Phenol-modified hyper-cross-linked resins with almost all micro/mesopores and their adsorption to aniline. J. Colloid. Interface Sci. 487, 31–37 (2017)CrossRefGoogle Scholar
  12. 12.
    N.N.S. Subri, P.A.G. Cormack, S.N.A.M. Jamil, L.C. Abdullah, R. Daik, Synthesis of poly(acrylonitrile-co-divinyl benzene-co-vinylbenzyl chloride)-derived hypercrosslinked polymer microspheres and apreliminary evaluation of their potential for the solid-phase capture of pharmaceuticals. J. Appl. Polym. Sci. 135, 45677 (2018)CrossRefGoogle Scholar
  13. 13.
    H. Woehlk, J. Steinkoenig, C. Lang, A.S. Goldmann, L. Barner, J.P. Blinco, K.E. Fairfull-Smith, C. Barner-Kowollik, Oxidative polymerization of catecholamines: structural access by high-resolution mass spectrometry. Polym. Chem. 8, 3050–3055 (2017)CrossRefGoogle Scholar
  14. 14.
    H.P. Fan, Z.L. Qi, D.J. Sui, F. Mao, R.Z. Chen, J. Huang, Palladium nanoparticles in cross-linked polyaniline as highly efficient catalysts for Suzuki-Miyaura reactions. Chin. J. Catal. 38, 589–596 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Asada, A. Nito, Y. Miyagi, J. Ishida, Y. Obora, F. Sanda, Sonogashira-Hagihara and Mizoroki-Heck couplingpolymerizations catalyzed by Pd nanoclusters. Macromolecules. 50, 4083–4087 (2017)CrossRefGoogle Scholar
  16. 16.
    W.J. Gong, J. Ma, Z.Y. Zhao, F. Gao, F. Liang, H.J. Zhang, S.M. Liu, Inhibition and Stabilization: Cucurbituril induced distinct effects on the Schiff-Base reaction. J. Org. Chem. 82, 3298–3301 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Janni, A. Thirupathi, S. Arora, S. Peruncheralathan, Chemoselective Ullmann coupling at room temperature: a facile access to 2-aminobenzo[b]thiophenes. Chem. Commun. 53, 8439–8442 (2017)CrossRefGoogle Scholar
  18. 18.
    K.S.J. Kumara, G. Krishnamurthy, B.E.K. Swamy, N.S. Kumar, M. Kumar, Catalytic performance study of nano-cobalt: a catalyst for complement to the Heck coupling reaction. J. Porous. Mat. 24, 1095–1103 (2017)CrossRefGoogle Scholar
  19. 19.
    H.N. Liu, Q. Li, Q.Q. Li, W. Jin, X.M. Li, A. Hameed, S.L. Qiao, Rational skeletal rigidity of conjugated microporous polythiophenes for gas uptake. Polym. Chem. 8, 6733–6740 (2017)CrossRefGoogle Scholar
  20. 20.
    S. Peshoria, A.K. Narula, Structural, morphological and electrochemical properties of a polypyrrole nanohybrid produced by template-assisted fabrication. J. Mater. Sci. 53, 3876–3888 (2018)CrossRefGoogle Scholar
  21. 21.
    L.J. Feng, Q. Chen, J.H. Zhu, D.P. Liu, Y.C. Zhao, B.H. Han, Adsorption performance and catalytic activity of porous conjugated polyporphyrinsviacarbazole-based oxidative coupling polymerization. Polym. Chem. 5, 3081–3088 (2014)CrossRefGoogle Scholar
  22. 22.
    H.Y. Yan, K.C. Kou, Enhanced thermoelectric properties in polyaniline composites with polyaniline-coated carbon nanotubes. J. Mater. Sci. 49, 1222–1228 (2014)CrossRefGoogle Scholar
  23. 23.
    V. Mazeiko, A.K. Minkstimiene, A. Ramanaviciene, Z. Balevicius, A. Ramanavicius, Gold nanoparticle and conducting polymer-polyaniline-based nanocomposites for glucose biosensor design. Sens. Actuators. B 189, 187–193 (2013)CrossRefGoogle Scholar
  24. 24.
    S.H. Qiu, C. Chen, W.R. Zheng, W. Li, H.C. Zhao, L.P. Wang, Long-term corrosion protection of mild steel by epoxy coating containing self-doped polyaniline nanofiber. Synth. Met. 229, 39–46 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Mohsennia, M.M. Bidgoli, F.A. Boroumand, A.M. Nia, Electrically conductive polyaniline as hole-injection layer for MEH-PPV: BT based polymer light emitting diodes. J. Mater. Sci. Eng. B. 197, 25–30 (2015)CrossRefGoogle Scholar
  26. 26.
    M.A. Moussa, M.H.A. Rehim, S.A. Khairy, M.A. Soliman, A.M. Ghoneim, G.M. Turky, Electrical investigations of polyaniline/sulfonated polystyrene composites using broadband dielectric spectroscopy. Synth. Met. 209, 34–40 (2015)CrossRefGoogle Scholar
  27. 27.
    P.R. Deshmukh, S.V. Patil, R.N. Bulakhe, S.D. Sartale, C.D. Lokhande, Inexpensive synthesis route of porous polyaniline-ruthenium oxide composite for supercapacitor application. Chem. Eng. J. 257, 82–89 (2014)CrossRefGoogle Scholar
  28. 28.
    X.X. He, J.T. Li, X.S. Jia, L. Tong, X.X. Wang, J. Zhang, J. Zheng, X. Ning, Y.Z. Long, Facile fabrication of multi-hierarchical porous polyaniline composite as pressure sensor and gas sensor with adjustable sensitivity. Nanoscale. Res. Lett. 12, 476–483 (2017)CrossRefGoogle Scholar
  29. 29.
    P. Sekar, B. Anothumakkool, S. Kurungot, 3D Polyaniline porous layer anchored pillared graphene sheets:enhanced interface joined with high conductivity for better chargestorage applications, ACS. Appl. Mater. Inter. 7, 7661–7669 (2015)CrossRefGoogle Scholar
  30. 30.
    H. Kwon, D. Hong, I. Ryu, S. Yim, Supercapacitive properties of 3D-arrayed polyaniline hollownanospheres encaging RuO2 nanoparticles. ACS. Appl. Mater. Interfaces. 9, 7412–7423 (2017)CrossRefGoogle Scholar
  31. 31.
    M.M. Sk, C.Y. Yue, R.K. Jena, Facile growth of heparin-controlled porous polyaniline nanofiber networks and their application in supercapacitors. RSC. Adv. 4, 5188–5197 (2014)CrossRefGoogle Scholar
  32. 32.
    M.B. Gholivand, M.M. Abolghasemi, P. Fattahpour, Highly porous silica-polyaniline nanocomposite as a novel solid-phase microextraction fiber coating. J. Sep. Sci. 35, 101–106 (2012)CrossRefGoogle Scholar
  33. 33.
    X. Wang, D. Liu, J.X. Deng, X.J. Duan, J.S. Guo, P. Liu, Improving cyclic stability of polyaniline by thermal crosslinking as electrode material for supercapacitors, RSC. Adv. 5, 78545–78552 (2015)Google Scholar
  34. 34.
    A.C. Anbalagan, S.N. Sawant, Brine solution-driven synthesis of porous polyaniline for supercapacitor electrode application. Polymer. 87, 129–137 (2016)CrossRefGoogle Scholar
  35. 35.
    J. Germain, J.M.J. Frechet, F. Svec, Hypercrosslinked polyanilines with nanoporous structure and high surface area: potential adsorbents for hydrogen storage. J. Mater. Chem. 47, 4989–4997 (2007)CrossRefGoogle Scholar
  36. 36.
    V. Sharma, A. Sahoo, Y. Sharma, P. Mohanty, Synthesis of nanoporous hypercrosslinked polyaniline (HCPANI) for gas sorption and electrochemical supercapacitor applications, RSC. Adv. 5, 45749–45754 (2015)CrossRefGoogle Scholar
  37. 37.
    V. Sharma, S. Khilari, D. Pradhan, P. Mohanty, Solvothermally synthesized nanoporous hypercrosslinked polyaniline: studies of the gas sorption and charge storage behavior. RSC. Adv. 6, 56421–56428 (2016)CrossRefGoogle Scholar
  38. 38.
    S.L. Wang, L.X. Tan, C.X. Zhang, I. Hussain, B.E. Tan, Novel POSS-based organic-inorganic hybrid porous materials by low cost strategies. J. Mater. Chem. A. 12, 6542–6548 (2015)CrossRefGoogle Scholar
  39. 39.
    F.K. Wang, X.H. Lu, C.B. He, Some recent developments of polyhedral oligomeric silsesquioxane(POSS)-based polymeric materials. J. Mater. Chem. 21, 2775–2782 (2011)CrossRefGoogle Scholar
  40. 40.
    Y. Wu, D.X. Wang, L.G. Li, W.Y. Yang, S.Y. Feng, H.Z. Liu, Hybrid porous polymers constructed from octavinylsilsesquioxane and benzene via Friedel–Crafts reaction: tunable porosity, gas sorption, and post functionalization. J. Mater. Chem. A. 2, 2160–2167 (2014)CrossRefGoogle Scholar
  41. 41.
    D.Z. Chen, S.P. Yi, W.B. Wu, Y.L. Zhong, J. Liao, C. Huang, W.J. Shi, Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using Vinyl-POSS derivatives as cross linking agents. Polymer. 51, 3867–3878 (2010)CrossRefGoogle Scholar
  42. 42.
    Y. Sun, A.G. MacDiarmid, A.J. Epstein, Polyaniline: synthesis and characterization of pernigraniline base. Chem. Commun. 7, 529–531 (1990)CrossRefGoogle Scholar
  43. 43.
    X. Wang, J.X. Deng, X.J. Duan, D. Liu, J.S. Guo, P. Liu, Crosslinked polyaniline nanorods with improved electrochemical performance as electrode material for supercapacitors. J. Mater. Chem. A. 2, 12323–12329 (2014)CrossRefGoogle Scholar
  44. 44.
    F.J. Guo, Q.Q. Liu, H.Y. Mi, Flexible and cross-linked polyaniline nets as promising supercapacitor electrodes. Mater. Lett. 163, 115–117 (2016)CrossRefGoogle Scholar
  45. 45.
    W. Chaikittisilp, M. Kubo, T. Moteki, A.S. Narutaki, A. Shimojima, T. Okubo, Porous siloxane organic hybrid with ultrahigh surface area through simultaneous polymerization-destruction of functionalized cubicsiloxane cages. J. Am. Chem. Soc. 133, 13832–13835 (2011)CrossRefGoogle Scholar
  46. 46.
    W.Y. Yang, D.X. Wang, L.G. Li, H.Z. Liu, Construction of hybrid porous materials from cubic octavinylsilsesquioxane through Friedel–Crafts reaction using tetraphenylsilane as a concentrative crosslinker. Eur. J. Inorg. Chem. 2014, 2976–2982 (2014)CrossRefGoogle Scholar
  47. 47.
    H.H. Liu, H.Z. Liu, Selective dye adsorption and metal ion detection using multifunctional silsesquioxane-based tetraphenylethene-linked nanoporous polymers. J. Mater. Chem. A. 5, 9156–9162 (2017)CrossRefGoogle Scholar
  48. 48.
    N.B. Mckeown, P.M. Budd, Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules. 43, 5163–5176 (2010)CrossRefGoogle Scholar
  49. 49.
    D.X. Wang, W.Y. Yang, L.G. Li, X. Zhao, S.Y. Feng, H.Z. Liu, Hybrid networks constructed from tetrahedral silicon-centered precursors and cubic POSS-based building blocks via Heck reaction: porosity, gassorption, and luminescence. J. Mater. Chem. A. 1, 13549–13558 (2013)CrossRefGoogle Scholar
  50. 50.
    Z.J. Gu, J.T. Wang, L.L. Li, L.F. Chen, Q. Shen, Formation of polyaniline nanotubes with different pore shapes using α-, β- and γ-cyclodextrins as templates. Mater. Lett. 117, 66–68 (2014)CrossRefGoogle Scholar
  51. 51.
    R. Shen, Y. Liu, W. Yang, Y. Hou, X. Zhao, H. Liu, Triphenylamine-functionalized Silsesquioxane-based hybrid porous polymers: tunable porosity and luminescence for multianalyte detection. Chem. Eur. J. 23, 13465–13473 (2017)CrossRefGoogle Scholar
  52. 52.
    H. Wang, X. Yuan, Y. Wu, X. Chen, L. Leng, H. Wang, H. Li, G. Zeng, Facile synthesis of polypyrrole decorated reduced graphene oxide-Fe3O4 magnetic composites and its application for the Cr(VI) removal. Chem. Eng. J. 262, 595–606 (2015)Google Scholar
  53. 53.
    Q. Hu, C. Guo, D. Sun, Y. Ma, B. Qiu, Z. Guo, Extracellular polymeric substances induced porous polyaniline for enhanced Cr(VI) removal from wastewater. ACS Sustain. Chem. Eng. 5, 11788–11796 (2017)CrossRefGoogle Scholar
  54. 54.
    U.O. Aigbe, R. Das, W.H. Ho, V. Srinivasu, A. Maity, A novel method for removal of Cr(VI) using polypyrrole magnetic nanocomposite in the presence of unsteady magnetic fields. Sep. Purif. Technol. 194, 377–387 (2018)CrossRefGoogle Scholar
  55. 55.
    Z. Zhang, T. Gao, S. Si, Q. Liu, Y. Wu, G. Zhou, One-pot preparation of P(TA-TEPA)-PAM-RGO ternary composite for high efficient Cr(VI) removal from aqueous solution. Chem. Eng. J. 343, 207–216 (2018)CrossRefGoogle Scholar
  56. 56.
    T. Wen, Q. Fan, X. Tan, Y. Chen, C. Chen, A. Xu, X. Wang, A core-shell structure of polyaniline coated protonic titanate nanobelt composites for both Cr(VI) and humic acid removal. Polym. Chem. 7, 785–794 (2016)CrossRefGoogle Scholar
  57. 57.
    G. Yang, L. Tang, Y. Cai, G. Zeng, P. Guo, G. Chen, Y. Zhou, J. Tang, J. Chen, W. Xiong, Effective removal of Cr(VI) through adsorption and reduction by magnetic mesoporous carbon incorporated with polyaniline. RSC Adv. 4 (2014) 58362 – 58371Google Scholar
  58. 58.
    J. Li, T. Peng, Y. Zhang, C. Zhou, A. Zhu, Polyaniline modified SnO2 nanoparticles for efficient photocatalytic reduction of aqueous Cr(VI) under visible light. Sep. Purif. Technol. 201, 120–129 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanPeople’s Republic of China
  2. 2.Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, Shandong Engineering Research Center for Fluorinated Material, School of Chemistry and Chemical EngineeringUniversity of JinanJinanPeople’s Republic of China

Personalised recommendations