Preparation and application of ordered mesoporous carbon-based solid acid catalysts for transesterification and epoxidation

Abstract

Ordered mesoporous carbon (OMC) was prepared via the inverse replication method using SBA-15 as a hard template and sucrose as a carbon precursor. OMC was sulfonated to obtain the solid acid catalysts, such as OMC-SS and OMC-DS, by heating with sulfuric acid or coupling with sulfanilic acid diazonium. TEM and small-angle X-ray diffraction (XRD) results showed that OMC, OMC-SS, and OMC-DS exhibited ordered porous structures. XPS and Raman analysis showed that OMC had graphite structure. N2-BET analysis indicated that OMC, OMC-SS, and OMC-DS had average pore diameters of 3.0–3.3 nm and exhibited bimodal mesopore size distributions. Moreover, N2-BET analysis revealed that OMC, OMC-SS, and OMC-DS had surface areas of 1411, 924 and 1001 m2/g, respectively. The surface acid contents of OMC-SS and OMC-DS were 3.9–4.0 mmol H+/ g and higher than those of OCM (2.8 mmol H+/g). FTIR results demonstrated that –SO3H was present on OMC-SS and OMC-DS. OMC-SS and OMC-DS were used to catalyze the transesterification and epoxidation of waste frying oil. The transesterification reactions catalyzed using OMC-SS and OMC-DS provided the maximum yields of fatty acid methyl esters of 90.3 ± 3.3% and 89.0 ± 2.1%, respectively. The double-bond conversion rates of epoxidation reactions catalyzed using OMC-SS and OMC-DS reached 77.2 ± 1.9% and 68.5 ± 2.6%, respectively. The epoxy yields of epoxidation reactions catalyzed using OMC-SS and OMC-DS were 70.3 ± 2.4% and 65.1 ± 1.8%, respectively.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    S.M.M. Ehteshami, S.H. Chan, Sep. Sci. Technol. 48(10), 1459–1466 (2013)

    Article  CAS  Google Scholar 

  2. 2.

    J. Torres-Perez, C. Gerente, Y. Andres, J. Environ. Sci. Health A 47(8), 1173–1185 (2012)

    Article  CAS  Google Scholar 

  3. 3.

    L. Zhou, J. Liu, X. Zhang, R. Liu, H. Huang, Nanoscale 6(11), 5831–5837 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    R.J. Carmona, L.F. Velasco, E. Laurenti, V. Maurino, C.O. Ania, Front. Mater. 3, 9 (2016)

    Article  Google Scholar 

  5. 5.

    H. Chen, H. Wang, Z. Xue, Int. J. Hydrogen Energy 37(24), 18888–18894 (2012)

    Article  CAS  Google Scholar 

  6. 6.

    T.N. Phan, K.G. Min, R. Thangavel, S.L. Yun, H.K. Chang, J. Alloy Compd. 743, 639–645 (2018)

    Article  CAS  Google Scholar 

  7. 7.

    S. Jun, S.H. Joo, R. Ryoo, J. Am. Chem. Soc. 122(43), 10712–10713 (2000)

    Article  CAS  Google Scholar 

  8. 8.

    S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature 412(6843), 169–172 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    M. Kaneda, T. Tsubakiyama, A. Carlsson, Y. Sakamoto, T. Ohsuna, O. Terasaki, S.H. Joo, R. Ryoo, J. Phys. Chem. B 106(6), 1256–1266 (2002)

    Article  CAS  Google Scholar 

  10. 10.

    J.Y.Z. Chiou, H. Kung, C. Wang, J. Saudi Chem. Soc. 21(2), 205–209 (2017)

    Article  CAS  Google Scholar 

  11. 11.

    C.C. Huang, Y.H. Li, Y.W. Wang, C.H. Chen, Int. J. Hydrogen Energy 38(10), 3994–4002 (2013)

    Article  CAS  Google Scholar 

  12. 12.

    Y. Li, B. Yuan. J. Fu, S. Deng, X. Lu, J. Colloid Interface Sci. 408(1), 181–190 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    M. Regiart, J.L. Magallanes, D. Barrera, J. Villarroel-Rocha, K. Sapag, J. Rabaa, F.A. Bertolino, Sens. Actuator B 232, 765–772 (2016)

    Article  CAS  Google Scholar 

  14. 14.

    M. Zhang, A. Sun, Y. Meng, L. Wang, H. Jiang, G. Li, Microporous Mesoporous Mater. 204, 210–217 (2015)

    Article  CAS  Google Scholar 

  15. 15.

    E.W. Qian, L.P.P. Sukma, S. Li, A. Higashi, Environ. Prog. Sustain. 35(2), 574–561 (2016)

    Article  CAS  Google Scholar 

  16. 16.

    X. Dong, Y. Jiang, W. Shan, M. Zhang, RSC Adv. 6, 17118–17124 (2016)

    Article  CAS  Google Scholar 

  17. 17.

    G. Tian, J.X. Geng, Y.D. Jin, C.L. Wang, S.Q. Li, J. Hazard. Mater. 190(1), 442–450 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    J.H. Kim, T. Kim, Y.C. Jeong, K. Lee, K.T. Park, Adv. Energy Mater. 5(14), 1500268 (2015)

    Article  CAS  Google Scholar 

  19. 19.

    Z.X. Du, Z. Tang, H.J. Wang, J. Zeng, Y. Chen, Chin. J. Catal. 34(1), 101–115 (2013)

    Article  CAS  Google Scholar 

  20. 20.

    N.Y. Yahya, N. Ngadi, M. Jusoh, N.A.A. Halim, Energy Convers. Manag. 129, 275–283 (2016)

    Article  CAS  Google Scholar 

  21. 21.

    I.K. Hong, H. Jeon, H. Kim, S.B. Lee, J. Ind. Eng. Chem. 42, 107–112 (2016)

    Article  CAS  Google Scholar 

  22. 22.

    C. Wang, T.T. Shen, X.K. Wang, Y.J. Tenside, Surfactant Deterg. 54(1), 64–70 (2017)

    Article  CAS  Google Scholar 

  23. 23.

    T. Mawatari, R. Fukuda, H. Mori, S. Mia, N. Ohno, Tribol. Lett. 51(2), 273–280 (2013)

    Article  CAS  Google Scholar 

  24. 24.

    X.Q. Liu, Y.C. Yang, B. Gao, Y.C. Li, J. Appl. Polym. Sci. 133(41), 44097 (2016)

    Article  CAS  Google Scholar 

  25. 25.

    G. Feng, L. Hu, Y. Ma, P. Jia, Y. Hu, M. Zhang, C. Liu, Y. Zhou, J. Clean Prod. 189, 334–343 (2018)

    Article  CAS  Google Scholar 

  26. 26.

    L.C. Meher, D. Vidya Sagar, S.N. Naik, Renew. Sust. Energy Rev. 10(3), 248–268 (2006)

    Article  CAS  Google Scholar 

  27. 27.

    H.B. Gao, Organic Chemistry, 4th edn. (Higher Education Press, Beijing, 2005), pp. 99–101

    Google Scholar 

  28. 28.

    D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chemlka, G.D. Stucky, Science 279, 548–552 (1998)

    Article  CAS  Google Scholar 

  29. 29.

    S. Sinadinović-Fišer, M. Janković, O. Borota, Chem. Eng. Process 62(6), 106–113 (2012)

    Article  CAS  Google Scholar 

  30. 30.

    L. Fang, K. Zhang, L. Chen. W.U. Peng, Chin. J. Catal. 34(5), 932–941 (2013)

    Article  CAS  Google Scholar 

  31. 31.

    A. Węgrzyniak, S. Jarczewski, A. Wach, E. Hędrzak, P. Kuśtrowsk, P. Michorczyk, Appl. Catal. A 508, 1–9 (2015)

    Article  CAS  Google Scholar 

  32. 32.

    J.M. Juárez, B.C. Ledesma, M.G. Costa, A.R. Beltramone, O.A. Anunziata, Microporous Mesoporous Mater. 254, 146–152 (2017)

    Article  CAS  Google Scholar 

  33. 33.

    M.J. Lázaro, L. Calvillo, E.G. Bordejé, R.R. Moliner, Microporous Mesoporous Mater. 103, 158–165 (2007)

    Article  CAS  Google Scholar 

  34. 34.

    J. Cheng, S. Jin, R. Zhang, Microporous Mesoporous Mat. 212, 137–145 (2015)

    Article  CAS  Google Scholar 

  35. 35.

    L. Peng, A. Philippaerts, X.X. Ke, J. Van Noyen, F. De Clippel, G. Van Tendeloo, P.A. Jacobs, B.F. Sels, Catal. Today 150(1), 140–146 (2010)

    Article  CAS  Google Scholar 

  36. 36.

    X. Dong, Y. Jiang, W. Shan, RSC Adv. 6(21), 17118–17124 (2016)

    Article  CAS  Google Scholar 

  37. 37.

    M. Lezanska, P. Pietrzyk, Sojka, J. Phys. Chem. C 114(2), 1208–1216 (2010)

    Article  CAS  Google Scholar 

  38. 38.

    P. Karandikar, K.R. Patil, A. Mitra, B. Kakade, A.J. Chandwadkar, Microporous Mesoporous Mater. 98, 189–199 (2007)

    Article  CAS  Google Scholar 

  39. 39.

    L. Rivoira, J. Juárez, H. Falcón, Catal. Today 282, 123–132 (2017)

    Article  CAS  Google Scholar 

  40. 40.

    H. Darmstadt, C. Roy, S. Kaliaguine, Carbon 40(14), 2673–2683 (2002)

    Article  CAS  Google Scholar 

  41. 41.

    W. Zhang, J. Cui, C.A. Tao, Angew. Chem. Int. Ed. 48(32), 5864–5868 (2009)

    Article  CAS  Google Scholar 

  42. 42.

    B.C. Ledesma, J.M. Juárez, V.A. Valles, Catal. Lett. 147(4), 1029–1039 (2017)

    Article  CAS  Google Scholar 

  43. 43.

    M. Zong, Z. Duan, W. Lou, T. Smith, H. Wu, Green Chem. 9(5), 434–437 (2007)

    Article  CAS  Google Scholar 

  44. 44.

    L. Geng, Y. Wang, G. Yu, Y. Zhu, Catal. Commun. 13(1), 26–30 (2011)

    Article  CAS  Google Scholar 

  45. 45.

    W. Li, T. Zhang, G. Pei, Bio Resour. 13(1), 1425–1440 (2018)

    CAS  Google Scholar 

  46. 46.

    A.S. Saraç, J. Springer, Surf. Coat. Technol. 160(2–3), 227–238 (2002)

    Article  Google Scholar 

  47. 47.

    Z.H. Gao, S.K. Tang, X.l. Cui, S.J. Tian, M.H. Zhang, Fuel 140, 669–676 (2015)

    Article  CAS  Google Scholar 

  48. 48.

    E.M. Björk, M.P. Militello, L.H. Tamborini, Appl. Catal. A 533, 49–58 (2017)

    Article  CAS  Google Scholar 

  49. 49.

    K.A. Shah, K.C. Maheria, J.K. Parikh, Energy Source Part A 38(10), 1470–1477 (2016)

    Article  CAS  Google Scholar 

  50. 50.

    A. Patel, N. Narkhede, Catal. Sci. Technol. 3(12), 3317–3325 (2013)

    Article  CAS  Google Scholar 

  51. 51.

    B. Karimi, H.M. Mirzaei, A. Mobaraki, Catal. Sci. Technol. 2(4), 828–834 (2012)

    Article  CAS  Google Scholar 

  52. 52.

    K.F. Carvalho, L.R.V. Da Conceicoa, J.P.V. Silva, Fuel 202, 503–511 (2017)

    Article  CAS  Google Scholar 

  53. 53.

    R. Turco, R. Vitiello, V. Russo, R. Tesser, E. Santacesaria, M. Di Serio, Green Process Synth. 2, 427–434 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work from the National Natural Science Foundation of Ningxia (NZ17094), National Natural Science Foundation of China (21266001), Ningxia scientific and technological innovation leading personnel training (KJT2017006), Leading talents in technological innovation (10,000 people plan), New Catalytic Process in Clean Energy Production (ZDZX201803), Ningxia low-grade resource high value utilization and environmental chemical integration technology innovation team project, New Catalytic Process in Clean Energy Production (ZDZX201803) are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hong Yuan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Yuan, H. & Wang, S. Preparation and application of ordered mesoporous carbon-based solid acid catalysts for transesterification and epoxidation. J Porous Mater 26, 1435–1445 (2019). https://doi.org/10.1007/s10934-019-00742-w

Download citation

Keywords

  • Ordered mesoporous carbon
  • Sulfonation
  • Transesterification
  • Epoxidation: waste frying oil