Novel hierarchical HZSM-5 zeolites prepared by combining desilication and steaming modification for converting methanol to propylene process

Abstract

The effect of mesoporosity formation and acidity modification have been investigated by desilication and combined desilication–dealumination treatments over highly siliceous zeolite HZSM-5 (Si/Al = 200) and its catalytic performance has been studied in the conversion of methanol to propylene (MTP) reaction. Desilication of a conventional microporous HZSM-5 catalyst was performed using NaOH, mixtures of NaOH and tetrapropylammonium hydroxide (TPAOH), and mixtures of NaOH and tetrabutylammonium hydroxide (TBAOH) with different ratios. Subsequent mild steaming treatment has been used to modify acidity of the selected samples. The physicochemical properties of all samples were characterized by XRD, FE-SEM, BET and NH3-TPD methods. Textural and acidity properties confirmed that TBAOH is more effective than TPAOH in the mesoporosity formation, micropore volume preservation, and acidity modification. Steaming treatment after desilication over the sample with TPAOH/(NaOH + TPAOH) ratio of 0.4, led to increase in selectivities to propylene from 38.4 to 41.3%, and total light olefins from 69.4 to 76.6%, while it led to decrease in C5+ components selectivity from 14.8 to 10.1%. The combined alkaline-steam treatment over the sample with TBAOH/(NaOH + TBAOH) ratio of 0.2 compared to the parent one led to considerable higher selectivities to propylene (44.8 vs. 30.7%), total light olefins (84.1 vs. 57.9%), as well as lower selectivities to C5+ components (7.4% vs. 27.1%). Moreover, this sample showed double lifetime (830 h) in MTP reaction compared to the conventional micropore ZSM-5 catalyst (425 h). The results showed that desilication led to a remarkable mesoporosity development, while steaming treatment generally influenced on the HZSM-5 acidity. Therefore, the combined alkaline-steam treatment leads to HZSM-5 zeolite formation with tailored pore architecture and surface acidic properties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    M. Khanmohammadi, Sh Amani, A.B. Garmarudi, A. Niaei, Chin. J. Catal. 37, 325–339 (2016)

    Article  CAS  Google Scholar 

  2. 2.

    F. Gorzin, J. Towfighi Darian, F. Yaripour, S.M. Mousavi, RSC Adv. 8, 41131–41142 (2018)

    Article  CAS  Google Scholar 

  3. 3.

    C. Mei, P. Wen, Z. Liu, H. Liu, Y. Wang, W. Yang, Z. Xie, W. Hua, Z. Gao, J. Catal. 258, 243–249 (2008)

    Article  CAS  Google Scholar 

  4. 4.

    M. Rostamizadeh, A. Taeb, J. Ind. Eng. Chem. 27, 297–306 (2015)

    Article  CAS  Google Scholar 

  5. 5.

    F. Yaripour, Z. Shariatinia, S. Sahebdelfar, A. Irandoukht, J. Nat. Gas Sci. Eng. 22, 260–269 (2015)

    Article  CAS  Google Scholar 

  6. 6.

    J. Liu, C. Zhang, Z. Shen, W. Hua, Y. Tang, W. Shen, Y. Yue, H. Xu, Catal. Commun. 10, 1506–1509 (2009)

    Article  CAS  Google Scholar 

  7. 7.

    S. Abelló, A. Bonilla, J. Pérez-Ramírez, Appl. Catal. A 364, 191–198 (2009)

    Article  CAS  Google Scholar 

  8. 8.

    J. Ahmadpour, M. Taghizadeh, J. Nat. Gas Sci. Eng. 23, 184–194 (2015)

    Article  CAS  Google Scholar 

  9. 9.

    D. Serrano, P. Pizarro, Chem. Soc. Rev. 42, 4004–4035 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    K. Möller, T. Bein, Chem. Soc. Rev. 42, 3689–3707 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    J. Čejka, S. Mintova, Catal. Rev. 49, 457–509 (2007)

    Article  CAS  Google Scholar 

  12. 12.

    Y. Cheng, L.-J. Wang, J.-S. Li, Y.-C. Yang, X.-Y. Sun, Mater. Lett. 59, 3393–3397 (2005)

    Article  CAS  Google Scholar 

  13. 13.

    Y. Wang, Y. Tang, A. Dong, X. Wang, N. Ren, Z. Gao, J. Mater. Chem. 12, 1812–1818 (2002)

    Article  CAS  Google Scholar 

  14. 14.

    W. Schwieger, A.G. Machoke, T. Weissenberger, A. Inayat, T. Selvam, M. Klumpp, A. Inayat, Chem. Soc. Rev. 45, 3353–3376 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    W. Dehertog, G. Froment, Appl. Catal. A 71, 153–165 (1991)

    Article  CAS  Google Scholar 

  16. 16.

    R. Chal, C. Gerardin, M. Bulut, S. Van Donk, ChemCatChem 3, 67–81 (2011)

    Article  CAS  Google Scholar 

  17. 17.

    Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Chem. Rev. 106, 896–910 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    J. Ahmadpour, M. Taghizadeh, C. R. Chim 18, 834–847 (2015)

    Article  CAS  Google Scholar 

  19. 19.

    Z. Hasan, J.W. Jun, C.-U. Kim, K.-E. Jeong, S.-Y. Jeong, S.H. Jhung, Mater. Res. Bull. 61, 469–474 (2015)

    Article  CAS  Google Scholar 

  20. 20.

    I.M. Dahl, S. Kolboe, J.Catal. 149, 458–464 (1994)

    Article  CAS  Google Scholar 

  21. 21.

    M. Stöcker, Zeolites and Catalysis: Synthesis, Reactions and Applications. Wiley, Weinheim, 687–711 (2010)

    Google Scholar 

  22. 22.

    D. Tzoulaki, A. Jentys, J. Pérez-Ramírez, K. Egeblad, J.A. Lercher, Catal. Today 198, 3–11 (2012)

    Article  CAS  Google Scholar 

  23. 23.

    K. Mlekodaj, K. Tarach, J. Datka, K. Góra-Marek, W. Makowski, Microporous Mesoporous Mater. 183, 54–61 (2014)

    Article  CAS  Google Scholar 

  24. 24.

    I.M. Dahl, S. Kolboe, Catal. Lett. 20, 329–336 (1993)

    Article  CAS  Google Scholar 

  25. 25.

    M. Bjørgen, F. Joensen, M.S. Holm, U. Olsbye, K.-P. Lillerud, S. Svelle, Appl. Catal. A 345, 43–50 (2008)

    Article  CAS  Google Scholar 

  26. 26.

    K. Sadowska, K. Góra-Marek, M. Drozdek, P. Kuśtrowski, J. Datka, J.M. Triguero, F. Rey Microporous Mesoporous Mater. 168, 195–205 (2013)

    Article  CAS  Google Scholar 

  27. 27.

    K. Sadowska, A. Wach, Z. Olejniczak, P. Kuśtrowski, J. Datka, Microporous Mesoporous Mater. 167, 82–88 (2013)

    Article  CAS  Google Scholar 

  28. 28.

    S. Kumar, A. Sinha, S. Hegde, S. Sivasanker, J. Mol. Catal. A 154, 115–120 (2000)

    Article  CAS  Google Scholar 

  29. 29.

    G. Liu, P. Tian, Y. Zhang, J. Li, L. Xu, S. Meng, Z. Liu, Microporous Mesoporous Mater. 114, 431–439 (2008)

    Article  CAS  Google Scholar 

  30. 30.

    M. Rostamizadeh, F. Yaripour, J. Taiwan Inst. Chem. Eng. 71, 454–463 (2017)

    Article  CAS  Google Scholar 

  31. 31.

    L.H. Ong, M. Dömök, R. Olindo, A.C. van Veen, J.A. Lercher, Microporous Mesoporous Mater. 164, 9–20 (2012)

    Article  CAS  Google Scholar 

  32. 32.

    M.M. Treacy, J.B. Higgins, Collection of simulated XRD powder patterns for zeolites, fifth (5th) revised edition (Elsevier, Boston, 2007)

    Google Scholar 

  33. 33.

    C. Baerlocher, L.B. McCusker, D.H. Olson, Atlas of zeolite framework types (Elsevier, Boston, 2007)

    Google Scholar 

  34. 34.

    U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T.V. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Angew. Chem. Int. Ed. 51, 5810–5831 (2012)

    Article  CAS  Google Scholar 

  35. 35.

    M.L. Gou, R. Wang, Q. Qiao, X. Yang, Microporous Mesoporous Mater. 206, 170–176 (2015)

    Article  CAS  Google Scholar 

  36. 36.

    T. Fu, J. Chang, J. Shao, Z. Li, J. Energy Chem. 26, 139–146 (2017)

    Article  Google Scholar 

  37. 37.

    D. Verboekend, J. Pérez-Ramírez, Chem. Eur. J. 17, 1137–1147 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    S. Abelló, J. Pérez-Ramírez, Phys.Chem.Chem.Phys. 11, 2959–2963 (2009)

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    R. Caicedo-Realpe, J. Pérez-Ramírez, Microporous Mesoporous Mater. 128, 91–100 (2010)

    Article  CAS  Google Scholar 

  40. 40.

    N. Viswanadham, R. Kamble, M. Singh, M. Kumar, G.M. Dhar, Catal.Today 141, 182–186 (2009)

    Article  CAS  Google Scholar 

  41. 41.

    J.V. Smith, Chem. Rev. 88, 149–182 (1988)

    Article  CAS  Google Scholar 

  42. 42.

    A. Čižmek, B. Subotić, R. Aiello, F. Crea, A. Nastro, C. Tuoto, Microporous Mater. 4, 159–168 (1995)

    Article  Google Scholar 

  43. 43.

    F. Yaripour, Z. Shariatinia, S. Sahebdelfar, A. Irandoukht, Microporous Mesoporous Mater. 203, 41–53 (2015)

    Article  CAS  Google Scholar 

  44. 44.

    S.M. Campbell, X.-Z. Jiang, R.F. Howe, Microporous Mesoporous Mater. 29, 91–108 (1999)

    Article  CAS  Google Scholar 

  45. 45.

    M. Rostamizadeh, A. Taeb, Synth. React. Inorg. M. 46(5), 665–671 (2016)

    Google Scholar 

  46. 46.

    S. Svelle, F. Joensen, J. Nerlov, U. Olsbye, K.-P. Lillerud, S. Kolboe, M. Bjørgen, J. Am.Chem.Soc. 128, 14770–14771 (2006)

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    M. Bjørgen, S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga, U. Olsbye, J. Catal. 249, 195–207 (2007)

    Article  CAS  Google Scholar 

  48. 48.

    S. Zhang, Y. Gong, L. Zhang, Y. Liu, T. Dou, J. Xu, F. Deng, Fuel Process.Technol. 129, 130–138 (2015)

    Article  CAS  Google Scholar 

  49. 49.

    Y. Fan, X. Bao, X. Lin, G. Shi, H. Liu, J. Phys. Chem. B 110, 15411–15416 (2006)

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    J.C. Groen, J.A. Moulijn, J. Pérez-Ramírez, Microporous Mesoporous Mater. 87, 153–161 (2005)

    Article  CAS  Google Scholar 

  51. 51.

    L. Jin, H. Hu, S. Zhu, B. Ma, Catal. Today 149, 207–211 (2010)

    Article  CAS  Google Scholar 

  52. 52.

    W.Y. Dong, Y.-J. Sun, H.-Y. He, Y.-C. Long, Microporous Mesoporous Mater. 32, 93–100 (1999)

    Article  CAS  Google Scholar 

  53. 53.

    J. Kim, M. Choi, R. Ryoo, J. Catal. 269, 219–228 (2010)

    Article  CAS  Google Scholar 

  54. 54.

    A.A. Rownaghi, F. Rezaei, J. Hedlund, Microporous Mesoporous Mater. 151, 26–33 (2012)

    Article  CAS  Google Scholar 

  55. 55.

    J. Maier, Angew. Chem. Int. Ed. Engl. 32, 528–542 (1993)

    Article  Google Scholar 

  56. 56.

    M. Milina, S. Mitchell, P. Crivelli, D. Cooke, J. Pérez-Ramírez, Nat. Commun. 5, 3922–3932 (2014)

    Article  Google Scholar 

  57. 57.

    M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature 461, 246–249 (2009)

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    D.M. Bibby, R.F. Howe, G.D. McLellan, Appl. Catal. A 93, 1–34 (1992)

    Article  CAS  Google Scholar 

  59. 59.

    M. Suzuki, F.-Y. Dai, I. Saito, Stud. Surf. Sci. Catal. 28, 223–230 (1986)

    Article  Google Scholar 

  60. 60.

    A. Xu, H. Ma, H. Zhang, D. Weiyong, D. Fang, Pol. J. Chem. Technol. 15, 95–101 (2013)

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jafar Towfighi Darian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 863 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gorzin, F., Darian, J.T., Yaripour, F. et al. Novel hierarchical HZSM-5 zeolites prepared by combining desilication and steaming modification for converting methanol to propylene process. J Porous Mater 26, 1407–1425 (2019). https://doi.org/10.1007/s10934-019-00740-y

Download citation

Keywords

  • High silica ZSM-5
  • Hierarchical zeolites
  • Desilication
  • Steaming modification
  • TPAOH
  • TBAOH
  • Methanol to propylene (MTP)