Amine-impregnated carbon aerogels with ultra-high pore volume synthesized by pH adjusting for efficient CO2 Capture

Abstract

Carbon aerogels with ultra-high pore volume and meso/macro pores were successfully synthesized by using silica hard templating combined sol–gel method by controlling the pH value of the initial reaction solution. High loadings (65–80 wt%) of TEPA (tetraethylenepentamine) and PEI (polyethyleneimine) were impregnated into CA with a high pore volume of 5.7 cm3/g for CO2 adsorption, respectively. The effects of amine loading, CO2 concentration, adsorption temperature, and moisture on the CO2 adsorption performance of the amine-loaded CA sorbents were comparatively investigated. The results showed that the CA with ultra-high pore volume enabled excellent CO2 adsorption capacity and fast kinetics (5.93 mmol/g and 4.70 mmol/g within 2.5 min for the case of TEPA and PEI respectively at 75 °C under 10% dry CO2). The sorbents exhibited good recycle-ability both in dry and humid conditions. Under humid conditions, the diffusion resistance of the sorbents at the initial stage of CO2 adsorption was observed. This study suggests that CA with large pore size could be utilized as promising amine sorbent for post-combustion CO2 capture.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9

References

  1. 1.

    R.A. Khatri, S.S.C. Chuang, Y. Soong, M. Gray, Energy Fuels 20(4), 1514–1520 (2006)

    Article  CAS  Google Scholar 

  2. 2.

    C. Chen, S. Zhang, K.H. Row, W.S. Ahn, J. Energy Chem. 26(5), 868–880 (2017)

    Article  CAS  Google Scholar 

  3. 3.

    H. Zhang, A. Goeppert, M. Czaun, G.K.S. Prakash, G.A. Olah, RSC Adv. 4, 19403–19417 (2014)

    Article  CAS  Google Scholar 

  4. 4.

    K. Wang, H. Shang, L. Li, X. Yan, Z. Yan, C. Liu, Q. Zha, J. Nat. Gas Chem. 21, 319–323 (2012)

    Article  CAS  Google Scholar 

  5. 5.

    J. Wang, M. Wang, B. Zhao, W. Qiao, D. Long, L. Ling, Ind. Eng. Chem. Res. 52, 5437–5444 (2013)

    Article  CAS  Google Scholar 

  6. 6.

    S. Gadipelli, H.A. Patel, Z. Guo, Adv. Mater. 27, 4903–4909 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    D. Wang, X. Ma, C. Sentorun-Shalaby, C. Song, Ind. Eng. Chem. Res. 51, 3048–3057 (2012)

    Article  CAS  Google Scholar 

  8. 8.

    S. Hu, C. Li, D. Wan, K. Li, C. Yu, W. Kong, J. Porous Mater. 25, 1691–1696 (2018)

    Article  CAS  Google Scholar 

  9. 9.

    L.A. Darunte, A.D. Oetomo, K.S. Walton, D.S. Sholl, C.W. Jones, ACS Sustain. Chem. Eng. 4, 5761–5768 (2016)

    Article  CAS  Google Scholar 

  10. 10.

    F. Song, Y. Zhao, Q. Zhong, J. Environ. Sci. 25, 554–560 (2013)

    Article  CAS  Google Scholar 

  11. 11.

    F. Liu, K. Huang, C.J. Yoo, C. Okonkwo, D.J. Tao, C.W. Jones, S. Dai, Chem. Eng. J. 314, 466–476 (2017)

    Article  CAS  Google Scholar 

  12. 12.

    H. Jung, D.H. Jo, C.H. Lee, W. Chung, D. Shin, S.H. Kim, Energy Fuels 28, 3994–4001 (2014)

    Article  CAS  Google Scholar 

  13. 13.

    H. Maleki, Chem. Eng. J. 300, 98–118 (2016)

    Article  CAS  Google Scholar 

  14. 14.

    N.N. Linneen, R. Pfeffer, Y. Lin, Ind. Eng. Chem. Res. 52, 14671–14679 (2013)

    Article  CAS  Google Scholar 

  15. 15.

    Y. Kong, G. Jiang, Y. Wu, S. Cui, X. Shen, Chem. Eng. J. 306, 362–368 (2016)

    Article  CAS  Google Scholar 

  16. 16.

    Y. Kong, X. Shen, S. Cui, M. Fan, Appl. Energy 147, 308–317 (2015)

    Article  CAS  Google Scholar 

  17. 17.

    Y. Kong, X. Shen, S. Cui, M. Fan, RSC Adv. 4, 64193–64199 (2014)

    Article  CAS  Google Scholar 

  18. 18.

    R. Begag, H. Krutka, W. Dong, D. Mihalcik, W. Rhine, G. Gould, J. Baldic, P. Nahass, Greenhouse Gases: Sci. Technol. 3, 30–39 (2013)

    Article  CAS  Google Scholar 

  19. 19.

    H. Zhang, A. Goeppert, G.A. Olah, G.K.S. Prakash, J. CO2 Util. 19, 91–99 (2017)

    Article  CAS  Google Scholar 

  20. 20.

    V. Zeleňák, M. Badaničová, D. Halamová, J. Čejka, A. Zukal, N. Murafa, G. Goerigk, Chem. Eng. J. 144, 336–342 (2008)

    Article  CAS  Google Scholar 

  21. 21.

    T. Witoon, Mater. Chem. Phys. 137, 235–245 (2012)

    Article  CAS  Google Scholar 

  22. 22.

    W. Xie, M. Yu, R. Wang, Aerosol Air Qual. Res. 17, 2715–2725 (2017)

    Article  CAS  Google Scholar 

  23. 23.

    A.D. Ebner, M.L. Gray, N.G. Chisholm, Q.T. Black, D.D. Mumford, M.A. Nicholson, J.A. Ritter, Ind. Eng. Chem. Res. 50, 5634–5641 (2011)

    Article  CAS  Google Scholar 

  24. 24.

    S.A. Al-Muhtaseb, J.A. Ritter, Adv. Mater. 15, 101–114 (2003)

    Article  CAS  Google Scholar 

  25. 25.

    S. Han, K. Sohn, T. Hyeon, Chem. Mater. 12, 3337–3341 (2000)

    Article  CAS  Google Scholar 

  26. 26.

    A. Olea, E.S. Sanz-Pérez, A. Arencibia, R. Sanz, G. Calleja, Adsorption 19, 589–600 (2013)

    Article  CAS  Google Scholar 

  27. 27.

    L. Pino, C. Italiano, A. Vita, C. Fabiano, V. Recupero, J. Environ. Sci. 48, 138–150 (2016)

    Article  Google Scholar 

  28. 28.

    E. Vilarrasa-Garcia, E.M.O. Moya, J.A. Cecilia, C.L. Cavalcante, J. Jiménez-Jiménez, D.C.S. Azevedo, E. Rodríguez-Castellón, Microporous Mesoporous Mater. 209, 172–183 (2015)

    Article  CAS  Google Scholar 

  29. 29.

    M.S. Shafeeyan, W.M.A.W. Daud, A. Houshmand, A. Arami-Niya, Appl. Surf. Sci. 257, 3936–3942 (2011)

    Article  CAS  Google Scholar 

  30. 30.

    L. Ye, Z.-H. Ji, W.J. Han, J.D. Hu, T. Zhao, J. Am. Ceram. Soc. 93, 1156–1163 (2010)

    Article  CAS  Google Scholar 

  31. 31.

    W.-C. Li, A.H. Lu, S.C. Guo, Carbon 39, 1989–1994 (2001)

    Article  CAS  Google Scholar 

  32. 32.

    K. Li, J. Jiang, S. Tian, F. Yan, X. Chen, J. Mater. Chem. A 3, 2166–2175 (2015)

    Article  CAS  Google Scholar 

  33. 33.

    C.S. Srikanth, S.S.C. Chuang, J. Phys. Chem. C 117, 9196–9205 (2013)

    Article  CAS  Google Scholar 

  34. 34.

    X. Wang, Q. Guo, T. Kong, Chem. Eng. J. 273, 472–480 (2015)

    Article  CAS  Google Scholar 

  35. 35.

    X. Feng, G. Hu, X. Hu, G. Xie, Y. Xie, J. Lu, M. Luo, Ind. Eng. Chem. Res. 52, 4221–4228 (2013)

    Article  CAS  Google Scholar 

  36. 36.

    T.C. Drage, A. Arenillas, K.M. Smith, C.E. Snape, Microporous Mesoporous Mater. 116, 504–512 (2008)

    Article  CAS  Google Scholar 

  37. 37.

    X. Wang, V. Schwartz, J.C. Clark, X. Ma, S.H. Overbury, X. Xu, C. Song, J. Phys. Chem. C 113, 7260–7268 (2009)

    Article  CAS  Google Scholar 

  38. 38.

    Z. Bacsik, R. Atluri, A.E. Garcia-Bennett, N. Hedin, Langmuir 26, 10013–10024 (2010)

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    M. Niu, H. Yang, X. Zhang, Y. Wang, A. Tang, ACS Appl. Mater. Interfaces 8, 17312–17320 (2016)

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    G. Qi, Y. Wang, L. Estevez, X. Duan, N. Anako, A.H.A. Park, W. Li, C.W. Jones, E.P. Giannelis, Energy Environ. Sci. 4, 444–452 (2011)

    Article  CAS  Google Scholar 

  41. 41.

    N. Minju, P. Abhilash, B.N. Nair, A.P. Mohamed, S. Ananthakumar, Chem. Eng. J. 269, 335–342 (2015)

    Article  CAS  Google Scholar 

  42. 42.

    M.A. Sakwa-Novak, C.J. Yoo, S. Tan, F. Rashidi, C.W. Jones, ChemSusChem 9, 1859–1868 (2016)

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    N.K. Sandhu, D. Pudasainee, P. Sarkar, R. Gupta, Ind. Eng. Chem. Res. 55, 2210–2220 (2016)

    Article  CAS  Google Scholar 

  44. 44.

    Y. Belmabkhout, R. Serna-Guerrero, A. Sayari, Chem. Eng. Sci. 65, 3695–3698 (2010)

    Article  CAS  Google Scholar 

  45. 45.

    L. Zhang, N. Zhan, Q. Jin, H. Liu, J. Hu, Ind. Eng. Chem. Res. 55, 5885–5891 (2016)

    Article  CAS  Google Scholar 

  46. 46.

    J. Zhao, F. Simeon, Y. Wang, G. Luo, T.A. Hatton, RSC Adv. 2, 6509–6519 (2012)

    Article  CAS  Google Scholar 

  47. 47.

    A. Goeppert, M. Czaun, R.B. May, G.K. Prakash, G.A. Olah, S.R. Narayanan, J. Am. Chem. Soc. 133, 20164–20167 (2011)

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    X. Wang, C. Song, Catal. Today 194, 44–52 (2012)

    Article  CAS  Google Scholar 

  49. 49.

    P. Zhao, G. Zhang, Y. Sun, Y. Xu, Energy Fuels 31, 12508–12520 (2017)

    Article  CAS  Google Scholar 

  50. 50.

    J. Han, Z. Du, W. Zou, H. Li, C. Zhang, Ind. Eng. Chem. Res. 54, 7623–7631 (2015)

    Article  CAS  Google Scholar 

  51. 51.

    M.W. Hahn, M. Steib, A. Jentys, J.A. Lercher, J. Phys. Chem. C 119, 4126–4135 (2015)

    Article  CAS  Google Scholar 

  52. 52.

    W. Yan, J. Tang, Z. Bian, J. Hu, H. Liu, Ind. Eng. Chem. Res. 51(9), 3653–3662 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Fundation of China (Grant No. 51406169).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongjun Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 521 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Cheng, Y., Liu, Y. et al. Amine-impregnated carbon aerogels with ultra-high pore volume synthesized by pH adjusting for efficient CO2 Capture. J Porous Mater 26, 1313–1323 (2019). https://doi.org/10.1007/s10934-019-00733-x

Download citation

Keywords

  • Ultra-high pore volume
  • pH
  • Carbon aerogels
  • Amine
  • CO2 adsorption