Ultralight and thermal insulation carbon foam/SiO2 aerogel composites


In this study, carbon foam (CF) and SiO2 aerogel composite were prepared by the sol–gel method under a circumstance of the atmospheric drying process. The Pyrolysis mechanism of carbon foam was investigated through thermal gravimetric analysis and Fourier transform infrared spectroscopy (FTIR). Carbon foam having ultralight properties with a density of 5.44 kg/m3, functions as a skeleton to support the composite. The maximum compressive stress measured for CF/SiO2 aerogel composite was about 1.0 MPa. At room temperature, the measured thermal conductivities of the CF and CF/SiO2 aerogel composite were 0.035 W/m K and 0.024 W/m K, while at 300 °C, it was reported to be 0.120 W/m K and 0.057 W/m K. Aerogel filled in carbon foam cells have significantly reduced the gaseous thermal conductivity of the prepared composite.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    N. Gallego, J. Klett, Carbon 41(7), 1461–1466 (2003)

    Article  CAS  Google Scholar 

  2. 2.

    S. Chen, G. He, H. Hu, S. Jin, Y. Zhou, Y. He, S. He, F. Zhao, H. Hou, Energy Environ. Sci. 6(8), 2435–2439 (2013)

    Article  CAS  Google Scholar 

  3. 3.

    Y. Wang, Z. Chen, S. Yu, M. Saeed, T. Xu, W. Wang, Y. Pan, J. Eur. Ceram. Soc. 37(1), 53–59 (2017)

    Article  CAS  Google Scholar 

  4. 4.

    N. Ohta, Y. Nishi, T. Morishita, Y. Ieko, A. Ito, M. Inagaki, N. Carbon Mater. 23(3), 216–220 (2008)

    Article  CAS  Google Scholar 

  5. 5.

    S. He, W. Chen, J. Power Sources 262(9), 391–400 (2014)

    CAS  Google Scholar 

  6. 6.

    W. Alshaer, S. Nada, M. Rady, E. Barrio, A. Sommier, Int. J. Therm. Sci 89, 79–86 (2015)

    Article  CAS  Google Scholar 

  7. 7.

    H. Zhang, Y. Zhou, C. Li, S. Chen, L. Liu, S. Liu, H. Yao, Carbon 95, 388–395 (2015)

    Article  CAS  Google Scholar 

  8. 8.

    Y. Sun, Q. Wu, G. Shi, Energy Environ. Sci. 4(4), 1113–1132 (2011)

    Article  CAS  Google Scholar 

  9. 9.

    L. Dimesso, C. Spanheimer, S. Jacke, W. Jaegermann, J. Power Sources Compos. 196(16), 6729–6734 (2011)

    Article  CAS  Google Scholar 

  10. 10.

    L. Ma, Z. Nie, X. Xi, B. Chen, Y. Chen, J. Porous Mater. 20(3), 557–562 (2013)

    Article  CAS  Google Scholar 

  11. 11.

    M. Ge, Z. Shen, W. Chi, H. Liu, Carbon 45(1), 141–145 (2007)

    Article  CAS  Google Scholar 

  12. 12.

    Y. Bao, L. Zhan, C. Wang, Y. Wang, W. Qiao, L. Ling, Mater. Lett. 65(19–20), 3154–3156 (2011)

    Article  CAS  Google Scholar 

  13. 13.

    T. Li, C. Wang, B. An, H. Wang, Carbon 43(9), 2030–2032 (2005)

    Article  CAS  Google Scholar 

  14. 14.

    S. Yu, Z. Chen, Y. Wang, R. Luo, Y. Pan, J. Porous Mater. 25(2), 527–536 (2017)

    Article  CAS  Google Scholar 

  15. 15.

    J. Laskowski, B. Milow, L. Ratke, J. Non-Cryst. Solids 441(1), 42–48 (2016)

    Article  CAS  Google Scholar 

  16. 16.

    N. Hüsing, U. Schubert, Angew. Chem., Int. Ed. 37(1-2), 22–45 (1998)

    Article  Google Scholar 

  17. 17.

    X. Gao, H. Lv, Z. Li, Q. Xu, H. Liu, Y. Wang, Y. Xia, RSC Adv. 6(109), 107278–107285 (2016)

    Article  CAS  Google Scholar 

  18. 18.

    M. Reim, W.K.örner,J. Manara, S. Korder, M. Arduini-Schuster, H. Ebert, J. Fricke, Sol. Energy 79(2), 131–139 (2005)

    Article  CAS  Google Scholar 

  19. 19.

    J. Feng, D. Le, S. Nguyen, V. Nien, D. Jewell, H. Duong, Colloids Surf. A 506, 298–305 (2016)

    Article  CAS  Google Scholar 

  20. 20.

    M. Dawidziuk, F. Carrasco-Marín, C. Moreno-Castilla, Carbon 47(11), 2679–2687 (2009)

    Article  CAS  Google Scholar 

  21. 21.

    Z. Xin, W. Li, W. Fang, X. He, L. Zhao, H. Chen, W. Zhang, Z. Sun, J. Nanopart. Res. 19(12), 386 (2017)

    Article  CAS  Google Scholar 

  22. 22.

    H. Liu, T. Li, Y. Shi, X. Zhao, J. Mater. Eng. Perform. 24(10), 4054 (2015)

    Article  CAS  Google Scholar 

  23. 23.

    S. Zeng, A. Hunt, R. Greif, J. Heat Transfer 117, 758–761 (1995)

    Article  CAS  Google Scholar 

Download references


The present work was supported by the National Natural Science Foundation of China (Grant No. 51772151) and Jiangsu R&D project (Grant No. BE2017054). This work was also supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information



Corresponding author

Correspondence to Zhaofeng Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, Z., Zhang, J. et al. Ultralight and thermal insulation carbon foam/SiO2 aerogel composites. J Porous Mater 26, 1305–1312 (2019). https://doi.org/10.1007/s10934-019-00732-y

Download citation


  • Carbon foam
  • SiO2 aerogel
  • Composite
  • Thermal conductivity