Conversion of CO2 to methanol using NiGa/mesosilica (NiGa/MSO) catalyst

Abstract

This study covered preparation, characterization and application of novel NiGa/MSO catalyst. The catalyst was prepared by impregnation method using precursors such as nitrates of nickel and gallium and support as mesoporous silica (mesosilica, MSO). Ordered mesoporous structure of the mesosilica support provided the catalyst with high dispersion of active sites and good thermal stability. Conversion of CO2 to methanol was also investigated to find suitable temperature and pressure for the process. Especially, oxidation state of active sites and catalyst element composition were also determined and calculated. Characterizations including XRD, TEM, TG-DSC-MS and XPS were used in the study. GC coupled with TCD and FID detectors were applied to determine the chemical composition of gas product.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    A. George, G.K. Olah, G. Alain, S. Prakash, Beyond oil and gas: the methanol economy, Wiley, New York, ISBN 978-3-527-32422-4 (2009)

    Google Scholar 

  2. 2.

    B. Cong Liu, E.C. Yang, S. Tyo, J. Seifert, B. DeBartolo, P. von Issendorff, S. Zapol, L.A. Vajda, Curtiss, Carbon dioxide conversion to methanol over size-selected Cu4 clus-ters at low pressures. J. Am. Chem. Soc. 137(27), 8676–8679 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    G. Suhas, P.D. Jadhav, B.M. Vaidya, B. Bhanage, J. Joshi, Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies. Chem. Eng. Res. Des. 92(11), 2557–2567 (2014)

    Article  CAS  Google Scholar 

  4. 4.

    J.G. Wu, M. Saito, M. Takeuchi, T. Watanabe, The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed. Appl. Catal. A Gen 218, 235–240 (2001)

    Article  CAS  Google Scholar 

  5. 5.

    J. Ma, N. Sun, X. Zhang, N. Zhao, F. Xiao, W. Wei, Y. Sun, A short review of catalysis for CO2 conversion. Catal. Today 148, 221–231 (2009)

    Article  CAS  Google Scholar 

  6. 6.

    W.J. Shen, M. Okumura, Y. Matsumura, M. Haruta, The influence of the support on the activity and selectivity of Pd in CO hydrogenation. Appl. Catal. A Gen. 213, 225–232 (2001)

    Article  CAS  Google Scholar 

  7. 7.

    C.H. Kim, J.S. Lee, D.L. Trimm, The preparation and characterisation of Pd–ZnO catalysts for methanol synthesis. Top. Catal. 22, 319–324 (2003)

    Article  CAS  Google Scholar 

  8. 8.

    X.L. Liang, X. Dong, G.D. Lin, H.B. Zhang, Carbon nanotube-supported Pd–ZnO catalyst for hydrogenation of CO2 to methanol. Appl. Catal. B Environ. 88, 315–322 (2009)

    Article  CAS  Google Scholar 

  9. 9.

    N. Iwasa, H. Suzuki, M. Terashita, M. Arai, N. Takezawa, Methanol synthesis from CO2 under atmospheric pressure over supported Pd catalysts. Catal. Lett. 96, 75–78 (2004)

    Article  CAS  Google Scholar 

  10. 10.

    I. Sharafutdinov, D. Gardini, G.L. Chiarello, C.F. Elkjær, H.W. Pereira de Carvalho, C.D. Damsgaard, J.B. Wagner, J.-D. Grunwaldt, S. Dahl, I. Chorkendorff, J. Catal. 320, 77–88 (2014)

    Article  CAS  Google Scholar 

  11. 11.

    Ibram, Ganesh, Conversion of carbon dioxide into methanol—a potential liquid fuel: fundamental challenges and opportunities (a review). Renew. Sustain. Energy Rev. 31, 221–257 (2014)

    Article  CAS  Google Scholar 

  12. 12.

    W. Wang, S. Wang, X. Ma, J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 40, 3703–3727 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    K.D. Hong, T.D. Nguyen, Preparation of meso-structured silica–calcium mixed oxide (MSCMO) catalyst for converting Vietnamese rubber seed oil to biodiesel. J. Porous Mater. 24(2), 443–454 (2017)

    Article  CAS  Google Scholar 

  14. 14.

    K.D. Hong, P.V. Nguyen, D. Pham, A. Vo, Preparation, characterization and thermal stability improvement of mesoporous sulfated zirconia for converting deodorizer distillate to methyl esters. J. Porous Mater. 24(2), 411–419 (2017)

    Article  CAS  Google Scholar 

  15. 15.

    H.K.D. Nguyen, H. Van Nguyen, D.S. Dao, L.L. Hoang, Preparation and characterization of ordered mesoporous Mg–Al–Co hydrotalcite based catalyst for decarboxylation of jatropha oil. J. Porous Mater. 24(3), 731–740 (2017)

    Article  CAS  Google Scholar 

  16. 16.

    I. Felix Studt, F. Sharafutdinov, C.F. Abild-Pedersen, S. Elkjær, K. Nørskov, S. Dahl, C. Jens. Nat. Chem. 6, 320–324 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Foundation for Science and Technology Development, Vietnam (NAFOSTED) under Grant Number 104.05-2017.21.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hong Khanh Dieu Nguyen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.K.D., Dang, T.H. Conversion of CO2 to methanol using NiGa/mesosilica (NiGa/MSO) catalyst. J Porous Mater 26, 1297–1304 (2019). https://doi.org/10.1007/s10934-019-00730-0

Download citation

Keywords

  • Mesoporous
  • Ni5Ga3
  • Methanol production
  • Hydrogenation
  • Carbon dioxide reduction