Superior architecture and electrochemical performance of MnO2 doped PANI/CNT graphene fastened composite


MnO2 doped polyaniline (PANI) grafted on 3D CNTs/graphene was fabricated using basic in situ redox deposition. The HRTEM and FESEM studies validate that MnO2 doped polyaniline (PANI) can be efficiently coated over the surface of CNTs/graphene. The incorporation of MnO2 in polyaniline well depicted by elemental mapping. The electrochemical studies showed that maximum specific capacitance of 1360 Fg−1 at 5 mV s−1 scan rate was achieved for the MnO2 doped PANI/CNTs/graphene composite, which was nearly 30% higher than 1160 Fg−1 of MnO2 doped PANI /CNTs and 50% more than the 600 Fg−1 of MnO2 doped PANI composite. Moreover, this composite provided a good cycling stability of 82% after 5000 cycles with mentionable capacitance retention. The incredible electrochemical performance is accredited mainly to the porous hierarchical architecture, which consisted of interconnected MnO2 doped PANI uniformly coated over the CNTs/graphene carbon framework.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    D.-H. Yeom, J. Choi, W.J. Byun, J.K. Lee, Manganese oxides nanocrystals supported on mesoporous carbon microspheres for energy storage application. Korean J. Chem. Eng. 33(10), 3029–3034 (2016)

    Article  CAS  Google Scholar 

  2. 2.

    A. Arslan, E. Hur, Electrochemical storage properties of polyaniline-, poly (N-methylaniline)-, and poly (N-ethylaniline)-coated pencil graphite electrodes. Chem. Pap. 68(4), 504–515 (2014)

    Article  CAS  Google Scholar 

  3. 3.

    M. Khan, G. Brunklaus, S. Ahmad, Probing the molecular orientation of chemically polymerized polythiophene-polyrotaxane via solid state NMR. Arab. J. Chem. 10(5), 708–714 (2017)

    Article  CAS  Google Scholar 

  4. 4.

    J. Wang, X. Li, X. Du, J. Wang, H. Ma, X. Jing, Polypyrrole composites with carbon materials for supercapacitors. Chem. Pap. 71(2), 293–316 (2017)

    Article  CAS  Google Scholar 

  5. 5.

    S. Grover, S. Shekhar, R.K. Sharma, G. Singh, Multiwalled carbon nanotube supported polypyrrole manganese oxide composite supercapacitor electrode: role of manganese oxide dispersion in performance evolution. Electrochim. Acta 116, 137–145 (2014)

    Article  CAS  Google Scholar 

  6. 6.

    A.K. Sharma, P. Bhardwaj, S.K. Dhawan, Y. Sharma, Oxidative synthesis and electrochemical studies of poly (aniline-co-pyrrole)-hybrid carbon nanostructured composite electrode materials for supercapacitor. Adv. Mater. Lett. 6(5), 414–420 (2015)

    Article  CAS  Google Scholar 

  7. 7.

    A.K. Sharma, Y. Sharma, Pseudocapacitive studies of polyaniline-carbon nanotube composites as electrode material for supercapacitor. Anal. Lett. 45(14), 2075–2085 (2012)

    Article  CAS  Google Scholar 

  8. 8.

    D. Liu, H. Wang, P. Du, W. Wei, Q. Wang, P. Liu, Flexible and robust reduced graphene oxide/carbon nanoparticles/polyaniline (RGO/CNs/PANI) composite films: excellent candidates as free-standing electrodes for high-performance supercapacitors. Electrochim. Acta 259, 161–169 (2018)

    Article  CAS  Google Scholar 

  9. 9.

    A.N. Golikanda, M. Bagherzadehc, Z. Shirazi, Evaluation of the polyaniline based nanocomposite modified with graphene nanosheet, carbon nanotube, and Pt nanoparticle as a material for supercapacitor. Electrochim. Acta 247, 116–124 (2017)

    Article  CAS  Google Scholar 

  10. 10.

    J. Shen, C. Yang, X. Li, G. Wang, High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. ACS Appl. Mater. Interface 5, 8467–8476 (2013)

    Article  CAS  Google Scholar 

  11. 11.

    Y. Liu, N. Wang, M. Yao, C. Yang, W. Hu, S. Komarneni, Porous Ag-doped MnO2 thin films for supercapacitor electrodes. J. Porous Mater. 24(6), 1717–1723 (2017)

    Article  CAS  Google Scholar 

  12. 12.

    F. Xiao, Y. Xu, Electrochemical co-deposition and characterization of MnO2/SWNT composite for supercapacitor application. J. Mater. Sci.: Mater. Electron. 24(6), 1913–1920 (2013)

    CAS  Google Scholar 

  13. 13.

    A. Ehsani, A.A. Heidari, H.M. Shiri, Electrochemical pseudocapacitors based on ternary nanocomposite of conductive polymer/graphene/metal oxide: an introduction and review to it in recent studies. Chem. Rec. 9(18), 15350–15363((2017)

    Google Scholar 

  14. 14.

    J. Wang, L. Dong, C. Xu, D. Ren, X. Ma, F. Kang, Polymorphous supercapacitors constructed from flexible three dimensional carbon network/polyaniline/MnO2 composite textiles. ACS Appl. Mater. Interfaces, 10(13), 10851–10859 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Y. Jin, H. Chen, M. Chen, N. Liu, Q. Li, Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interface 5(8), 3408–3416 (2013)

    Article  CAS  Google Scholar 

  16. 16.

    Z. Lei, F. Shi, L. Lu, Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl. Mater. Interface 4(2), 1058–1064 (2012)

    Article  CAS  Google Scholar 

  17. 17.

    H. Jiang, Y. Dai, Y. Hu, W. Chen, C. Li, Nanostructured ternary nanocomposite of rGO/CNTs/MnO2 for high-rate supercapacitors. ACS Sustain. Chem. Eng. 2(1), 70–74 (2013)

    Article  CAS  Google Scholar 

  18. 18.

    X. Huang, M. Kim, H. Suh, I. Kim, Hierarchically nanostructured carbon-supported manganese oxide for high-performance pseudo-capacitors. Korean J. Chem. Eng. 33(7), 2228–2234 (2015)

    Article  CAS  Google Scholar 

  19. 19.

    A. Thambidurai, J.K. Lourdusamy, J.V. John, S. Ganesan, Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors—a comparative investigation. Korean J. Chem. Eng. 31(2), 268–275 (2014)

    Article  CAS  Google Scholar 

  20. 20.

    T. Hao, W. Wang, D. Yu, Flexible cotton-based supercapacitor electrode with high stability prepared by multiwalled CNTs/PANI. J. Electron. Mater. 47(7), 4108–4115 (2018)

    Article  CAS  Google Scholar 

  21. 21.

    K. Wang, J. Huang, Z. Wei, Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C. 114(17), 8062–8067 (2010)

    Article  CAS  Google Scholar 

  22. 22.

    K. Zhang, L.L. Zhang, X. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22(4), 1392–1401 (2010)

    Article  CAS  Google Scholar 

  23. 23.

    S.I.A. Razak, A.L. Ahmad, S.H.S. Zein, Polymerisation of protonic polyaniline/multi-walled carbon nanotubes-manganese dioxide nanocomposites. J. Phys. Sci. 20(1), 27–34 (2009)

    CAS  Google Scholar 

  24. 24.

    W. Wu, Y. Li, L. Yang, Y. Ma, X. Yan, Preparation and characterization of coaxial multiwalled carbon nanotubes/polyaniline tubular nanocomposites for electrochemical energy storage in the presence of sodium alginate. Synth. Met. 193, 48–57 (2014)

    Article  CAS  Google Scholar 

  25. 25.

    X. Du, M. Xiao, Y. Meng, Facile synthesis of highly conductive polyaniline/graphite nanocomposites. Eur. Polym. J. 40(7), 1489–1493 (2004)

    Article  CAS  Google Scholar 

  26. 26.

    H. Liu, Y. Wang, X. Gou, T. Qi, J. Yang, Y. Ding, Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications. Mater. Sci. Eng.: B. 178(5), 293–298 (2013)

    Article  CAS  Google Scholar 

  27. 27.

    J. Yang, X. Wang, X. Wang, R. Jia, J. Huang, Preparation of highly conductive CNTs/polyaniline composites through plasma pretreating and in-situ polymerization. J. Phys. Chem. Solid. 71(4), 448–452 (2010)

    Article  CAS  Google Scholar 

  28. 28.

    Z.J. Han, D.H. Seo, S. Yick, J.H. Chen, K.K. Ostrikov, MnOx/carbon nanotube/reduced graphene oxide nanohybrids as high-performance supercapacitor electrodes. NPG Asia Mater. 6(10), e140 (2014)

    Article  CAS  Google Scholar 

  29. 29.

    P.K. Upadhyay, A. Ahmad, Chemical synthesis, spectral characterization and stability of some electrically conducting polymers. Chin. J. Polym. Sci. 28(2), 191–197 (2010)

    Article  CAS  Google Scholar 

  30. 30.

    L. Lamaita, M.A. Peluso, J.E. Sambeth, H.J. Thomas, Synthesis and characterization of manganese oxides employed in VOCs abatement. Appl. Catal. B: Environ. 61(1), 114–119 (2005)

    Article  CAS  Google Scholar 

  31. 31.

    Y. Li, H. Peng, G. Li, K. Chen, Synthesis and electrochemical performance of sandwich-like polyaniline/graphene composite nanosheets. Eur. Polym. J. 48(8), 1406–1412 (2012)

    Article  CAS  Google Scholar 

  32. 32.

    M. Villalobos, B. Lanson, A. Manceau, B. Toner, G. Sposito, Structural model for the biogenic Mn oxide produced by Pseudomonas putida. Am. Mineral. 91(4), 489–502 (2006)

    Article  CAS  Google Scholar 

  33. 33.

    H. Zhu, J. Luo, H. Yang, J. Liang, G. Rao, J. Li, Z. Du, Birnessite-type MnO2 nanowalls and their magnetic properties. J. Phys. Chem. C. 112(44), 17089–17094 (2008)

    Article  CAS  Google Scholar 

  34. 34.

    F. Yang, M. Xu, S.-J. Bao, Q.-Q. Sun, MnO2-assisted fabrication of PANI/MWCNT composite and its application as a supercapacitor. RSC Adv. 4(63), 33569–33573 (2014)

    Article  CAS  Google Scholar 

  35. 35.

    F. Meng, X. Yan, Y. Zhu, P. Si, Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive property. Nanoscale Res. lett 8(1), 1–8 (2013)

    Article  CAS  Google Scholar 

  36. 36.

    A. Eftekhari, Energy efficiency: a critically important but neglected factor in battery research. Sustain. Energy Fuel 1, 2053–2060 (2017)

    Article  CAS  Google Scholar 

  37. 37.

    Y. Rangom, X. Tang, L.F. Nazar, Carbon nanotube-based supercapacitors with excellent AC line filtering and rate capability via improved interfacial impedance. ACS Nano 9, 7248–7255 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    A. Eftekhari, M. Mohamedi, Tailoring pseudocapactive materials from a mechanistic perspective. Energy Storage Mater. 6, 211–229 (2017)

    Google Scholar 

  39. 39.

    J. Song, M.Z. Bazant, Effects of nanoparticle geometry and size distribution on diffusion impedance of battery electrodes. J. Electrochem. Soc. 160, A15 (2013)

    Article  CAS  Google Scholar 

  40. 40.

    A. Eftekhari, The mechanism of ultrafast supercapacitors. J. Mater. Chem. A 6, 2866 (2018)

    Article  CAS  Google Scholar 

Download references


Ashok K. Sharma and Indu Kaushal are thankful to University Grants Commission (F. No. 42–345/2013 (SR)), New Delhi, India for providing financial assistance under the scheme of support for major research project.

Author information



Corresponding author

Correspondence to Ashok K. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaushal, I., Sharma, A.K., Saharan, P. et al. Superior architecture and electrochemical performance of MnO2 doped PANI/CNT graphene fastened composite. J Porous Mater 26, 1287–1296 (2019).

Download citation


  • MnO2
  • Graphene
  • Supercapacitor
  • CNTs
  • PANI
  • Specific capacitance
  • Composite