Ce-doped mesoporous alumina supported Fe-based catalyst with high activity for oxidative dehydrogenation of 1-butene using CO2 as soft oxidant


Ce-doped mesoporous alumina supported Fe-based catalyst (Fe2O3/Meso-CeAl) was prepared and employed for 1,3-butadiene (BD) synthesis by oxidative dehydrogenation of 1-butene, using CO2 as soft oxidant. The worm-like porous structure of Fe2O3/Meso-CeAl catalyst with highly dispersed Ce in alumina matrix and high dispersion of iron species on Meso-CeAl surface was confirmed by N2 adsorption, transmission electron microscopy and X-ray diffraction results. Compared with Fe2O3/γ-Al2O3 and Fe2O3/Meso-Al2O3 catalysts, X-ray photoelectron spectroscopy and CO2-TPD results respectively demonstrated the increasing in oxygen storage capacity and improvement in CO2 adsorption and activation ability for Fe2O3/Meso-CeAl-100 catalyst. Consequently, the Fe2O3/Meso-CeAl-100 catalyst showed excellent catalytic activity (1879 gBD/kgcat/h), high CO2 conversion (14%) and high BD selectivity (51%). Not only the structural properties and highly dispersed iron species, but also the good oxygen storage capacity and thus good CO2 adsorption and activation ability contributed positively to the good performance of Fe2O3/Meso-CeAl-100 catalyst.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    E.V. Makshina, M. Dusselier, W. Janssens, J. Degreve, P.A. Jacobs, B.F. Sels, Chem. Soc. Rev. 43(22), 7917–7953 (2014)

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    W.C. White, Chem. Biol. Interact. 166, 10–14 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    C. Wan, D.G. Cheng, F.Q. Chen, X.L. Zhan, Catal. Today 264, 180–184 (2016)

    Article  CAS  Google Scholar 

  4. 4.

    C. Wan, D.G. Cheng, F.Q. Chen, X.L. Zhan, RSC Adv. 5(53), 42609–42615 (2015)

    Article  CAS  Google Scholar 

  5. 5.

    W. Yan, Q.Y. Kouk, S.X. Tan, J. Luo, Y. Liu, J. CO2 Util. 15, 154–159 (2016)

  6. 6.

    L. Zhang, Z.L. Wu, N.C. Nelson, A.D. Sadow, I.I. Slowing, S.H. Overbury, ACS Catal. 5(11), 6426–6435 (2015)

    Article  CAS  Google Scholar 

  7. 7.

    M.A. Chen, J. Xu, Y. Cao, H.Y. He, K.N. Fan, J.H. Zhuang, J. Catal. 272(1), 101–108 (2010)

    Article  CAS  Google Scholar 

  8. 8.

    N. Mimura, M. Okamoto, H. Yamashita, S.T. Oyama, K. Murata, J. Phys. Chem. B 110(43), 21764–21770 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    M.B. Ansari, S.E. Park, Energ. Environ. Sci. 5(11), 9419–9437 (2012)

    Article  CAS  Google Scholar 

  10. 10.

    D. Mukherjee, S.E. Park, B.M. Reddy, J. CO2 Util. 16, 301–312 (2016)

  11. 11.

    Y. Gao, B.L. Wang, B. Yan, J. Li, F. Alam, Z.Z. Xiao, T. Jiang, React. Kinet. Mech. Catal. 122(1), 451–462 (2017)

    Article  CAS  Google Scholar 

  12. 12.

    S.B. Wang, Z.H. Zhu, Energ. Fuel 18(4), 1126–1139 (2004)

    Article  CAS  Google Scholar 

  13. 13.

    J.D. Shakun, P.U. Clark, F. He, S.A. Marcott, A.C. Mix, Z. Liu, B. Otto-Bliesner, A. Schmittner, E. Bard, Nature 484(7392), 49–54 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    M.D. Porosoff, J.W. Baldwin, X. Peng, G. Mpourmpakis, H.D. Willauer, ChemSusChem 10(11), 2408–2415 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    L.H. Yang, H.M. Wang, ChemSusChem 7(4), 962–998 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    W.J. Yan, Q.Y. Kouk, J.Z. Luo, Y. Liu, A. Borgna, Catal. Commun. 46, 208–212 (2014)

    Article  CAS  Google Scholar 

  17. 17.

    W.J. Yan, J.Z. Luo, Q.Y. Kouk, J.E. Zheng, Z.Y. Zhong, Y. Liu, A. Borgna, Appl. Catal. A 508, 61–67 (2015)

    Article  CAS  Google Scholar 

  18. 18.

    Q. Yuan, A.X. Yin, C. Luo, L.D. Sun, Y.W. Zhang, W.T. Duan, H.C. Liu, C.H. Yan, J. Am. Chem. Soc. 130(11), 3465–3472 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    H. Ham, J. Kim, S.J. Cho, J.H. Choi, D.J. Moon, J.W. Bae, ACS Catal. 6(9), 5629–5640 (2016)

    Article  CAS  Google Scholar 

  20. 20.

    S. Zhou, Y. Zhou, J. Shi, Y. Zhang, X. Sheng, Z. Zhang, J. Mater. Sci. 50(11), 3984–3993 (2015)

    Article  CAS  Google Scholar 

  21. 21.

    B. Yan, Y. Gao, B.L. Wang, X.T. Fan, F. Alam, J. Li, T. Jiang, ChemCatChem 9(24), 4480–4483 (2017)

    Article  CAS  Google Scholar 

  22. 22.

    B.K. Vu, M.B. Song, I.Y. Ahn, Y.W. Suh, D.J. Suh, W.I. Kim, H.L. Koh, Y.G. Choi, E.W. Shin, Catal. Today 164(1), 214–220 (2011)

    Article  CAS  Google Scholar 

  23. 23.

    W.Z. Zhang, T.J. Pinnavaia, Chem. Commun. 1185–1186 (1998)

  24. 24.

    Q. Yuan, H.H. Duan, L.L. Li, Z.X. Li, W.T. Duan, L.S. Zhang, W.G. Song, C.H. Yan, Adv. Mater. 22(13), 1475–1478 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    F. Huang, Y. Zheng, Z.H. Li, Y.H. Xiao, G.H. Cai, K.M. Wei, Chem. Commun. 47(18), 5247–5249 (2011)

    Article  CAS  Google Scholar 

  26. 26.

    H. Ma, L. Zeng, H. Tian, D. Li, X. Wang, X. Li, J. Gong. Appl. Catal. B. 181, 321–331 (2016)

    Article  CAS  Google Scholar 

  27. 27.

    J. Cejka, P.J. Kooyman, L. Vesela, J. Rathousky, A. Zukal, Phys. Chem. Chem. Phys. 4(19), 4823–4829 (2002)

    Article  CAS  Google Scholar 

  28. 28.

    X. Zhu, K.Z. Li, Y.G. Wei, H. Wang, L.Y. Sun, Energ. Fuel 28(2), 754–760 (2014)

    Article  CAS  Google Scholar 

  29. 29.

    K.Z. Li, H. Wang, Y.G. Wei, D.X. Yan, Chem. Eng. J. 173(2), 574–582 (2011)

    Article  CAS  Google Scholar 

  30. 30.

    J.C. Jung, H. Lee, H. Kim, S. Park, Y.M. Chung, T.J. Kim, S.J. Lee, S.H. Oh, Y.S. Kim, I.K. Song, Catal. Commun. 9(10), 2059–2062 (2008)

    Article  CAS  Google Scholar 

  31. 31.

    J.L. Zhang, H. Hu, J. Xu, G.M. Wu, Z.W. Zeng, J. Environ. Sci. 26(7), 1437–1443 (2014)

    Article  CAS  Google Scholar 

  32. 32.

    B.R. Zhao, Y.X. Pan, C.J. Liu, Catal. Today 194(1), 60–64 (2012)

    Article  CAS  Google Scholar 

  33. 33.

    Y. Wang, J. Zhao, T.F. Wang, Y.X. Li, X.Y. Li, J. Yin, C.Y. Wang, J. Catal. 337, 293–302 (2016)

    Article  CAS  Google Scholar 

  34. 34.

    K.R. Hahn, A.P. Seitsonen, M. Iannuzzi, J. Hutter, ChemCatChem 7(4), 625–634 (2015)

    Article  CAS  Google Scholar 

  35. 35.

    K. Yoshikawa, H. Sato, M. Kaneeda, J.N. Kondo, J. CO2 Util. 8, 34–38 (2014)

  36. 36.

    B. Yan, L.Y. Wang, B.L. Wang, F. Alam, Z.Z. Xiao, J. Li, T. Jiang, Appl. Catal. A 572, 71–79 (2019)

    Article  CAS  Google Scholar 

  37. 37.

    L. Chen, S.P. Wang, J.J. Zhou, Y.L. Shen, Y.J. Zhao, X.B. Ma, RSC Adv. 4(59), 30968–30975 (2014)

    Article  CAS  Google Scholar 

  38. 38.

    T. Staudt, Y. Lykhach, N. Tsud, T. Skala, K.C. Prince, V. Matolin, J. Libuda, J. Phys. Chem. C 115(17), 8716–8724 (2011)

    Article  CAS  Google Scholar 

Download references


We thank the sponsorship of the National Natural Science Foundation of China (NSFC) (Grant No. 21606172) and the PetroChina Innovation Foundation (2016D-5007-0502).

Author information



Corresponding author

Correspondence to Tao Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 141 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, B., Wang, B., Wang, L. et al. Ce-doped mesoporous alumina supported Fe-based catalyst with high activity for oxidative dehydrogenation of 1-butene using CO2 as soft oxidant. J Porous Mater 26, 1269–1277 (2019). https://doi.org/10.1007/s10934-019-00726-w

Download citation


  • Ce-doped mesoporous alumina
  • 1,3-Butadiene
  • 1-Butene
  • CO2
  • Oxidative dehydrogenation