Magnetically separable porous titanosilicate/Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under UV light irradiation

Abstract

Magnetically separable mesoporous titanosilicate-Fe3O4 (FTS) hybrid nanocomposite has been developed. The synthesized porous FTS were well characterized by various analytical techniques like XRD, field emission SEM, TEM, BET, FT-IR, and UV–Vis diffused reflectance spectra for morphological and chemical properties evaluation. FESEM and TEM results shows the growth of finely distributed Fe3O4 particles in the titanosilicate matrix, its porous FTS has a great influence on the electronic and optical properties. More significantly, the FTS nanocomposite exhibit enhanced photocatalytic activity for the degradation of methylene blue under UV light irradiation. The optimum photocatalytic activity of FTS15 at 15 wt% of Fe3O4 under visible light is almost 3.5 and fivefold higher than pure titanosilicate (TS) and pure Fe3O4 (FO) respectively. We conformed that synthesized FTS15 hybrid photo catalyst are highly stable even after five successive experimental runs by XRD spectra. The improved photocatalytic performance of the FTS15 hybrid nanocomposite under UV light irradiation was due to the synergistic effect of the pure TS and pure FO. Therefore, FTS15 hybrid photo catalyst is a promising candidate for energy conversion and environmental remediation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    J. Tian, L. Zhang, X. Fan, Y. Zhou, M. Wang, R. Cheng, M. Li, X. Kan, X. Jin, Z. Liu et al., A post-grafting strategy to modify g-C3N4 with aromatic heterocycles for enhanced photocatalytic activity. J. Mater. Chem. A 4(36), 13814–13821 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    Y. Huang, Y. Liu, D. Zhu, Y. Xin, B. Zhang, Mediator-free Z-scheme photocatalytic system based on ultrathin CdS nanosheets for efficient hydrogen evolution. J. Mater. Chem. A 4(35), 13626–13635 (2016)

    CAS  Article  Google Scholar 

  3. 3.

    B. Liu, Z. Jin, L. Bai, J. Liang, Q. Zhang, N. Wang, C. Liu, C. Wei, Y. Zhao, X. Zhang, Molybdenum-supported amorphous MoS3 catalyst for efficient hydrogen evolution in solar-water-splitting devices. J. Mater. Chem. A 4(37), 14204–14212 (2016)

    CAS  Article  Google Scholar 

  4. 4.

    X. Chang, T. Wang, Gong, J., CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9(7), 2177–2196 (2016)

    CAS  Article  Google Scholar 

  5. 5.

    W.-N. Wang, Comparison of CO2 photoreduction systems: a review. Aerosol Air Qual. Res. 14(2), 533–549 (2014)

    CAS  Article  Google Scholar 

  6. 6.

    M. Marszewski, S. Cao, J. Yu, M. Jaroniec, Semiconductor-based photocatalytic CO2 conversion. Mater. Horiz. 2(3), 261–278 (2015)

    CAS  Article  Google Scholar 

  7. 7.

    H. Zhou, Y. Qu, T. Zeid, X. Duan, Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 5(5), 6732 (2012)

    CAS  Article  Google Scholar 

  8. 8.

    H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24(2), 229–251 (2012)

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    S. Kumar, T. Surendar, A. Baruah, V. Shanker, Synthesis of a novel and stable g-C3N4–Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation. J. Mater. Chem. A 1(17), 5333 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Appl. Catal. B 49(1), 1–14 (2004)

    CAS  Article  Google Scholar 

  11. 11.

    A. Fujishima, X. Zhang, D. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515–582 (2008)

    CAS  Article  Google Scholar 

  12. 12.

    X. Lu, Q. Wang, D. Cui, Preparation and photocatalytic properties of g-C3N4/TiO2 hybrid composite. J. Mater. Sci. Technol. 26(10), 925–930 (2010)

    CAS  Article  Google Scholar 

  13. 13.

    Y.H. Sehlleier, S. Hardt, C. Schulz, H. Wiggers, A novel magnetically-separable porous iron-oxide nanocomposite as an adsorbent for methylene blue (MB) dye. J. Environ. Chem. Eng. 4(4), 3779–3787 (2016)

    CAS  Article  Google Scholar 

  14. 14.

    S. Kumar, T. Surendar, B. Kumar, A. Baruah, V. Shanker, Synthesis of magnetically separable and recyclable g-C3N4–Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation. J. Phys. Chem. C 117(49), 26135–26143 (2013)

    CAS  Article  Google Scholar 

  15. 15.

    M. Taramasso, G. P. and B. N. United States Patent [19], 1983

  16. 16.

    J.H. Pan, H. Dou, Z. Xiong, C. Xu, J. Ma, X.S. Zhao, Porous photocatalysts for advanced water purifications. J. Mater. Chem. 20(22), 4512 (2010)

    CAS  Article  Google Scholar 

  17. 17.

    M. Moliner, A. Corma, Advances in the synthesis of titanosilicates: from the medium pore TS-1 zeolite to highly-accessible ordered materials. Microporous Mesoporous Mater. 189, 31–40 (2014)

    CAS  Article  Google Scholar 

  18. 18.

    S. Uma, S. Rodrigues, I.N. Martyanov, K.J. Klabunde, Exploration of photocatalytic activities of titanosilicate ETS-10 and transition metal incorporated ETS-10. Microporous Mesoporous Mater. 67(2–3), 181–187 (2004)

    CAS  Article  Google Scholar 

  19. 19.

    F.X. Llabrés i Xamena, P. Calza, C. Lamberti, C. Prestipino, A. Damin, S. Bordiga, E. Pelizzetti, A. Zecchina, Enhancement of the ETS-10 titanosilicate activity in the shape-selective photocatalytic degradation of large aromatic molecules by controlled defect production. J. Am. Chem. Soc. 125(8), 2264–2271 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    S.K. Das, M.K. Bhunia, A. Bhaumik, Highly ordered Ti-SBA-15: efficient H2 adsorbent and photocatalyst for eco-toxic dye degradation. J. Solid State Chem. 183(6), 1326–1333 (2010)

    CAS  Article  Google Scholar 

  21. 21.

    S. Anandan, Photocatalytic effects of titania supported nanoporous MCM-41 on degradation of methyl orange in the presence of electron acceptors. Dyes Pigments 76(2), 535–541 (2008)

    CAS  Article  Google Scholar 

  22. 22.

    C.M. Parlett, K. Wilson, A.F. Lee, Hierarchical porous materials: catalytic applications. Chem. Soc. Rev. 42(9), 3876–3893 (2013)

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    K.-M. Choi, T. Yokoi, T. Tatsumi, K. Kuroda, A novel route for preparation of Ti-containing mesoporous silica with high catalytic performance by using a molecular precursor tetrakis(tris-tert-butoxysiloxy)titanium. J. Mater. Chem. A 1(7), 2485 (2013)

    CAS  Article  Google Scholar 

  24. 24.

    M. Selvaraj, Highly active and green mesostructured titanosilicate catalysts synthesized for selective synthesis of benzoquinones. Catal. Sci. Technol. 4(8), 2674 (2014)

    CAS  Article  Google Scholar 

  25. 25.

    M.V. Barmatova, I.D. Ivanchikova, O.A. Kholdeeva, A.N. Shmakov, V.I. Zaikovskii, M.S. Mel’gunov, Magnetically separable titanium-silicate mesoporous materials with core–shell morphology: synthesis, characterization and catalytic properties. J. Mater. Chem. 19(39), 7332 (2009)

    CAS  Article  Google Scholar 

  26. 26.

    L. Ren, S. Huang, W. Fan, T. Liu, One-step preparation of hierarchical superparamagnetic iron oxide/graphene composites via hydrothermal method. Appl. Surf. Sci. 258(3), 1132–1138 (2011)

    CAS  Article  Google Scholar 

  27. 27.

    G. Xi, B. Yue, J. Cao, J. Ye, Fe3O4/WO3 hierarchical core-shell structure: high-performance and recyclable visible-light photocatalysis. Chem. Eur. J. 17(18), 5145–5154 (2011)

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    R. Chalasani, S. Vasudevan, Cyclodextrin-functionalized Fe3O4@TiO2: reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies. ACS Nano 7(5) 4093–4104 (2013)

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang, Y. Chen, Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 19(18), 2710 (2009)

    CAS  Article  Google Scholar 

  30. 30.

    J. Su, M. Cao, L. Ren, C. Hu, Fe3O4–graphene nanocomposites with improved lithium storage and magnetism properties. J. Phys. Chem. C 115(30), 14469–14477 (2011)

    CAS  Article  Google Scholar 

  31. 31.

    X. Li, X. Huang, D. Liu, X. Wang, S. Song, L. Zhou, H. Zhang, Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J. Phys. Chem. C 115(44), 21567–21573 (2011)

    CAS  Article  Google Scholar 

  32. 32.

    P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie et al., Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012)

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    H.M. Abdelaal, Fabrication of hollow silica microspheres utilizing a hydrothermal approach. Chin. Chem. Lett. 25(4), 627–629 (2014)

    CAS  Article  Google Scholar 

  34. 34.

    S. Tonda, S. Kumar, V. Shanker, In situ growth strategy for highly efficient Ag2CO3/g-C3N4 hetero/nanojunctions with enhanced photocatalytic activity under sunlight irradiation. J. Environ. Chem. Eng. 3(2), 852–861 (2015)

    CAS  Article  Google Scholar 

  35. 35.

    J. Xie, K. Chen, H. Lee, C. Xu, A.R. Hsu, S. Peng, X. Chen, S. Sun, Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin αvβ3-rich tumor cells. J. Am. Chem. Soc. 130(24), 7542–7543 (2008)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    J. Sudhakareddy, R. Kumar, Synthesis, characterization, and catalytic properties of a titanium silicate, TS-2, with MEL structure. J. Catal. 130(2), 440–446 (1991)

    Article  Google Scholar 

  37. 37.

    A.K. Adepu, R. Anumula, V. Narayanan, Photocatalytic degradation of rhodamine B over a novel mesoporous titanosilicate/g-C3N4 nanocomposite under direct sunlight irradiation. Microporous Mesoporous Mater. 247, 86–94 (2017)

    CAS  Article  Google Scholar 

  38. 38.

    Y. Cao, C. Li, J. Li, Q. Li, J. Yang, Magnetically separable Fe3O4/AgBr hybrid materials: highly efficient photocatalytic activity and good stability. Nanoscale Res. Lett. 10(1), 251 (2015)

    Article  CAS  PubMed Central  Google Scholar 

  39. 39.

    A.K. Adepu, V. Katta, V. Narayanan, Synthesis, characterization, and photocatalytic degradation of rhodamine B dye under sunlight irradiation of porous titanosilicate (TS)/bismuth vanadate (BiVO4) nanocomposite hybrid catalyst. New J. Chem. 41(6), 2498–2504 (2017)

    CAS  Article  Google Scholar 

  40. 40.

    S. Xuan, W. Jiang, X. Gong, Y. Hu, Z. Chen, Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity. J. Phys. Chem. C 113(2), 553–558 (2009)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the MHRD, New Delhi and DST-SERB (EMR/2014/000629), New Delhi for partial funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Narayanan Venkatathri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 165 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adepu, A.K., Goskula, S., Chirra, S. et al. Magnetically separable porous titanosilicate/Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under UV light irradiation. J Porous Mater 26, 1259–1267 (2019). https://doi.org/10.1007/s10934-019-00719-9

Download citation

Keywords

  • Mesoporous
  • Titanosilicate
  • Methylene blue dye
  • Photocatalysis