Skip to main content
Log in

Characterization and temperature evolution of iron-containing species in HZSM-5 zeolite prepared from different iron sources

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Iron-containing HZSM-5 zeolites are materials with important industrial applications as catalysts. Their characterization is difficult due to the various possible Fe-containing species which can exist in the pores of HZSM-5 zeolites and their dependence on the preparation technique. Three Fe–HZSM-5 samples were prepared by ion-exchange technique using different iron precursors: containing only Fe2+ or Fe3+ ions, and containing equimolar mixture of Fe2+ and Fe3+ ions. The samples were characterized by various experimental techniques (XRD, FTIR, UV–Vis spectroscopy and XANES/EXAFS) in order to clarify the type of the Fe-containing species existing in the samples. Periodic density functional calculations were also performed to help in elucidation of the obtained structural information with the EXAFS data and in clarification of the relative stability of the various Fe-containing species in the pores of the HZSM-5 zeolites. In the samples prepared with only Fe2+ or Fe3+ ions dominate isolated iron species but binuclear FeOFe2+ species and small iron oxide clusters are also present. In the third sample, prepared from a precursor containing iron ions in both oxidation states, most of the iron is included in the iron oxide clusters or small nanoparticles. The time-resolved XAS for the sample containing equimolar Fe2+ and Fe3+ ions revealed existence of two types of dominant iron oxide species—small oligonuclear clusters in the temperature region 100–300 °C and larger more oxidized moieties (nanoparticles) after heating the sample up to 400 and 500 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V.I. Sobolev, G.I. Panov, A.S. Kharitonov, V.N. Romannikov, A.M. Volodin, K.G. Ione, J. Catal. 139, 435 (1993)

    Article  CAS  Google Scholar 

  2. E.V. Kondratenko, J. Pérez-Ramírez, Appl. Catal. A 267, 181 (2004)

    Article  CAS  Google Scholar 

  3. M.F. Fellah, R.A. van Santen, I. Onal, J. Phys. Chem. C 113, 15307 (2009)

    Article  CAS  Google Scholar 

  4. I. Yuranov, D.A. Bulushev, A. Renken, L. Kiwi-Minsker, Appl. Catal. A 319, 128 (2007)

    Article  CAS  Google Scholar 

  5. D. Ivanov, L.V. Piryutko, V.I. Sobolev, Pet. Chem. 44, 322 (2003)

    Google Scholar 

  6. H. Ehrich, W. Schwieger, K. Jähnisch, Appl. Catal. A 272, 311 (2004)

    Article  CAS  Google Scholar 

  7. V. Georgieva, R. Retoux, V. Ruaux, V. Valtchev, S. Mintova, Front. Chem. Sci. Eng. 12, 94 (2018)

    Article  CAS  Google Scholar 

  8. S. Bordiga, R. Buzzoni, F. Geobaldo, C. Lamberti, E. Giamello, A. Zecchina, G. Leofanti, G. Petrini, G. Tozzola, G. Vlaic, J. Catal. 158, 486 (1996)

    Article  CAS  Google Scholar 

  9. J. Perez-Ramirez, J.C. Groen, A. Brückner, M.S. Kumar, U. Bentrup, M.N. Debbagh, L.A. Villaescusa, J. Catal. 232, 318 (2005)

    Article  CAS  Google Scholar 

  10. M. Mihaylov, E. Ivanova, K. Chakarova, P. Novachka, K. Hadjiivanov, Appl. Catal. A 391, 3 (2011)

    Article  CAS  Google Scholar 

  11. M. Schwidder, M. Santhosh Kumar, A. Brückner, W. Grünert, Chem. Commun. 0, 805 (2005)

    Article  CAS  Google Scholar 

  12. S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, Catal. Rev. Sci. Eng. 50, 492 (2008)

    Article  CAS  Google Scholar 

  13. K. Sun, H. Xia, E. Hensen, R. van Santen, C. Li, J. Catal. 238, 186 (2006)

    Article  CAS  Google Scholar 

  14. G. Li, E.A. Pidko, R.A. van Santen, C. Li, E.J.M. Hensen, J. Phys. Chem. C 117, 413 (2013)

    Article  CAS  Google Scholar 

  15. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  CAS  Google Scholar 

  16. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  CAS  Google Scholar 

  17. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  CAS  Google Scholar 

  18. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  CAS  Google Scholar 

  19. G. Kresse, J. Hafner, J. Phys. Condens. Matter 6, 8245 (1994)

    Article  CAS  Google Scholar 

  20. C. Baerlocher, L.B. McCusker, Database of Zeolite Structures. https://asia.iza-structure.org/IZA-SC/framework.php?STC=MFI. Accessed 24 July 2018

  21. Y. Jeanvoine, J.G. Ángyán, G. Kresse, J. Hafner, J. Phys. Chem. B 102, 5573 (1998)

    Article  CAS  Google Scholar 

  22. H.A. Aleksandrov, G.N. Vayssilov, N. Rösch, Stud. Surf. Sci. Catal. 158, 593 (2005)

    Article  Google Scholar 

  23. H.A. Aleksandrov, E.A.I. Shor, A.M. Shor, V.A. Nasluzov, G.N. Vayssilov, N. Rösch, Soft Matter. 10, 216 (2012)

    Article  CAS  Google Scholar 

  24. J. Gurgul, K. Łatka, I. Hnat, J. Rynkowski, S. Dzwigaj, Microporous Mesoporous Mater. 168, 1 (2013)

    Article  CAS  Google Scholar 

  25. J.C. Aurora, E. Dolores, J.S. César, J.R.S. Francisco, Materials. 5, 121 (2012)

    Article  CAS  Google Scholar 

  26. S. Allahyari, M. Haghighi, A. Ebadi, S. Hosseinzadeh, Ultrason. Sonochem. 21, 663 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. M. Anpo, Y. Shioya, H. Yamashita, E. Giamello, C. Morterra, M. Che, H.H. Patterson, S. Webber, S. Ouellette, J. Phys. Chem. 98, 5744 (1994)

    Article  CAS  Google Scholar 

  28. M. Thommes, K. Kaneko, V. Neimark Alexander, P. Olivier James, F. Rodriguez-, J. Reinoso, S.W. Rouquerol, Sing, Kenneth, Pure Appl. Chem. 87, 1051 (2015)

    Article  CAS  Google Scholar 

  29. P.V. Roxana, E. Inga, H. Heming, B. Ursula, S. Volker, G. Wolfgang, B. Angelika, J. Catal. 316, 103 (2014)

    Article  CAS  Google Scholar 

  30. S.H. Choi, B.R. Wood, J.A. Ryder, A.T. Bell, J. Phys. Chem. B 107, 11843 (2003)

    Article  CAS  Google Scholar 

  31. M. Ogura, K. Itabashi, J. Dedecek, T. Onkawa, Y. Shimada, K. Kawakami, K. Onodera, S. Nakamura, T. Okubo, J. Catal. 315, 1 (2014)

    Article  CAS  Google Scholar 

  32. A. Mockovčiaková, Z. Orolínová, M. Matik, P. Hudec, E. Kmecová, Acta Montan. Slovaca Ročník 11, 353 (2006)

    Google Scholar 

  33. E. Tabor, G. Sádovská, M. Bernauer, P. Sazama, J. Nováková, V. Fíla, T. Kmječ, J. Kohout, K. Závěta, Z. Sobalík, Appl. Catal. A 240, 358 (2019)

    Article  CAS  Google Scholar 

  34. A. Heyden, B. Peters, A.T. Bell, F.J. Keil, J. Phys. Chem. B 109, 1857 (2005)

    Article  CAS  PubMed  Google Scholar 

  35. P. Sazama, B. Wichterlová, E. Tábor, P. Štastný, N.K. Sathu, Z. Sobalík, J. Dědeček, Š Sklenák, P. Klein, A. Vondrová, J. Catal. 312, 123 (2014)

    Article  CAS  Google Scholar 

  36. L.K. Minsker, D.A. Bulushev, A. Renken, J. Catal. 219, 273 (2003)

    Article  CAS  Google Scholar 

  37. P. Boroń, L. Chmielarz, J. Gurgul, K. Łątka, B. Gil, B. Marszałek, S. Dzwigaj, Microporous Mesoporous Mater. 203, 73 (2015)

    Article  CAS  Google Scholar 

  38. P. Xie, Z. Ma, T. Meng, C. Huang, C. Miao, Y. Yue, W. Hua, Z. Gao, J. Mol. Catal. A 409, 50 (2015)

    Article  CAS  Google Scholar 

  39. J. Perez-Ramírez, F. Kapteijn, G. Mul, J.A. Moulijn, Chem. Commun. 693 (2001)

  40. J.H. Park, J.H. Choung, I.S. Nam, S.W. Ham, Appl. Catal. B 78, 342 (2008)

    Article  CAS  Google Scholar 

  41. M.S. Kumar, M. Schwidder, W. Grünert, A. Brückner, J. Catal. 227, 384 (2004)

    Article  CAS  Google Scholar 

  42. I. Ellmers, R.P. Vélez, U. Bentrup, W. Schwieger, A. Brückner, W. Grünert, Catal. Today 258, 337 (2015)

    Article  CAS  Google Scholar 

  43. G.D. Pirngruber, M. Luechinger, P.K. Roy, A. Cecchetto, P. Smirniotis, J. Catal. 224, 429 (2004)

    Article  CAS  Google Scholar 

  44. L.D. Li, Q. Shen, J.J. Li, Z.P. Hao, Z.P. Xu, G.Q. Max, Lu, Appl. Catal. A 344, 131 (2008)

    Article  CAS  Google Scholar 

  45. G. Moretti, G. Fierro, G. Ferraris, G.B. Andreozzi, V. Naticchioni, J. Catal. 318, 1 (2014)

    Article  CAS  Google Scholar 

  46. S. Buttha, S. Youngme, J. Wittayakun, S. Loiha, Mol. Catal. 461, 26 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NS, SB, WP, SL, and JW acknowledge the financial support by the Thailand Research Fund (TRF MRG5480049), Center of Excellence for Innovation in Chemistry (PERCH-CIC), Khon Kaen University, and Beamline 2.2, Synchrotron Light Research Institute (SLRI), Thailand. IZK, HAA, and GNV gratefully acknowledge the support by the Horizon 2020 program of the European Union (project Materials Networking - grant agreement 692146, and COST Action MP1306) and computational resources provided by the Bulgarian supercomputer Avitohol. HAA and IZK acknowledge financial support by the Bulgarian Science Fund (project DCOST01/18).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sirinuch Loiha or Hristiyan A. Aleksandrov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senamart, N., Buttha, S., Pantupho, W. et al. Characterization and temperature evolution of iron-containing species in HZSM-5 zeolite prepared from different iron sources. J Porous Mater 26, 1227–1240 (2019). https://doi.org/10.1007/s10934-019-00718-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00718-w

Keywords

Navigation