Skip to main content
Log in

Drying induced phase separation in poly(styrene)–poly(ethylene glycol)–chlorobenzene system

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The morphological studies of poly(styrene)–poly(ethylene glycol)–chlorobenzene films have been performed using scanning electron microscopy. The average diameter of the holes present in the coatings decreased from 7.68 to 3.74 µm with the increase in the polymer content from 5 to 10%. The solvent played a major role in forming ordered porous polymer films. Asymmetric membrane formed at different concentrations of the ternary system. The effects of various parameters like polymer mass fraction, initial film thickness, and technique of application, on the pore size and uniformity have been studied. The membranes are formed at different concentrations of the ternary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. A. Mirmohseni, A. Oladegaragoze, Construction of a sensor for determination of ammonia and aliphatic amines using polyvinylpyrrolidone coated quartz crystal microbalance. Sens. Actuators B 89, 164–172 (2003)

    Article  CAS  Google Scholar 

  2. D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Design and preparation of porous polymers. Chem. Rev. 112, 3959–4015 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. O. Pitois, B. Francois, Formation of ordered micro-porous membranes. Eur. Phys. J. B 8, 225–231 (1999)

    Article  CAS  Google Scholar 

  4. G. Widawski, M. Rawiso, B. François, Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369, 387 (1994)

    Article  CAS  Google Scholar 

  5. B. Francois, Y. Ederle, C. Mathis, Honeycomb membranes made from C60 (PS) 6. Synth. Met. 103 (1999) 2362–2363

    Article  CAS  Google Scholar 

  6. B. Ladewig, M.N.Z. Al-Shaeli, Fundamentals of membrane processes, in Fundamentals of Membrane Bioreactors (Springer, Singapore, 2017), pp. 13–37

  7. D. Vaessen, A. McCormick, L. Francis, Effects of phase separation on stress development in polymeric coatings. Polymer 43, 2267–2277 (2002)

    Article  CAS  Google Scholar 

  8. R.K. Arya, Phase separation in multicomponent polymer–solvent–nonsolvent coatings. S. Afr. J. Chem. Eng. 18, 30–40 (2013)

    Google Scholar 

  9. S.-T. Hsu, Y.L. Yao, Effect of film formation method and annealing on morphology and crystal structure of poly(l-lactic acid) films. J. Manuf. Sci. Eng. 136, 021006 (2014)

    Article  Google Scholar 

  10. R.K. Arya, Calibration curves to measure concentrations in multicomponent polymeric coatings using confocal Raman spectroscopy. Int. J. Chem. Eng. Appl. 2, 421–424 (2011)

    CAS  Google Scholar 

  11. J. Sharma, R.K. Arya, S. Ahuja, C.K. Bhargava, Residual solvent study in polymer–polymer–solvent coatings: poly(styrene)–poly(methyl methacrylate)–tetrahydrofuran coatings. Prog. Org. Coat. 113, 200–206 (2017)

    Article  CAS  Google Scholar 

  12. J. Sharma, K. Tewari, R.K. Arya, Diffusion in polymeric systems—a review on free volume theory. Prog. Org. Coat. 111, 83–92 (2017)

    Article  CAS  Google Scholar 

  13. H. Yabu, M. Takebayashi, M. Tanaka, M. Shimomura, Superhydrophobic and lipophobic properties of self-organized honeycomb and pincushion structures. Langmuir 21, 3235–3237 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. M. Srinivasarao, D. Collings, A. Philips, S. Patel, Three-dimensionally ordered array of air bubbles in a polymer film. Science 292, 79–83 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa, T. Hashimoto, Water-assisted formation of micrometer-size honeycomb patterns of polymers. Langmuir 16, 6071–6076 (2000)

    Article  CAS  Google Scholar 

  16. B. de Boer, U. Stalmach, H. Nijland, G. Hadziioannou, Microporous honeycomb-structured films of semiconducting block copolymers and their use as patterned templates. Adv. Mater. 12, 1581–1583 (2000)

    Article  Google Scholar 

  17. H. Yabu, M. Tanaka, K. Ijiro, M. Shimomura, Preparation of honeycomb-patterned polyimide films by self-organization. Langmuir 19, 6297–6300 (2003)

    Article  CAS  Google Scholar 

  18. H. Matsuyama, M. Nishiguchi, Y. Kitamura, Phase separation mechanism during membrane formation by dry-cast process. J. Appl. Polym. Sci. 77, 776–783 (2000)

    Article  CAS  Google Scholar 

  19. B. François, O. Pitois, J. François, Polymer films with a self-organized honeycomb morphology. Adv. Mater. 7, 1041–1044 (1995)

    Article  Google Scholar 

  20. L. Ghannam, M. Manguian, J. François, L. Billon, A versatile route to functional biomimetic coatings: ionomers for honeycomb-like structures. Soft Matter 3, 1492–1499 (2007)

    Article  CAS  Google Scholar 

  21. M. Nicho, D. Peña-Salgado, P. Altuzar-Coello, Morphological and physicochemical properties of spin-coated poly(3-octylthiophene)/polystyrene composite thin films. Thin Solid Films 518, 1799–1803 (2010)

    Article  CAS  Google Scholar 

  22. I. Sharifian, Conductive and biodegradable polyaniline/starch blends and their composites with polystyrene. Iran. Polym. J. 20, 319–328 (2011)

    Google Scholar 

  23. E. Ferrari, P. Fabbri, F. Pilati, Solvent and substrate contributions to the formation of breath figure patterns in polystyrene films. Langmuir 27, 1874–1881 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. C. Panayiotou, J. Vera, Thermodynamics of polymer–polymer–solvent and block copolymer–solvent systems. I. Experimental measurements. Polym. J. 16, 89–102 (1984)

    Article  CAS  Google Scholar 

  25. C. Panayiotou, J. Vera, Thermodynamics of polymer–polymer–solvent and block copolymer–solvent systems. II. Theoretical treatment of data with the nonrandom new Flory theory. Polym. J. 16, 103–112 (1984)

    Article  CAS  Google Scholar 

  26. A. Clark, Direct analysis of experimental tie line data (two polymer–one solvent systems) using Flory–Huggins theory. Carbohydr. Polym. 42, 337–351 (2000)

    Article  CAS  Google Scholar 

  27. P.E. Price, I.H. Romdhane, Multicomponent diffusion theory and its applications to polymer–solvent systems. AIChE J. 49, 309–322 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Science and Engineering Research Board-Department of Science and Technology, New Delhi, India (Project File No. EEQ/2016/000015) for the research funding, and the Thapar Institute of Engineering and Technology, Patiala, for the Seed Grant and other necessary facilities to conduct this research. Authors also like to thank to Mr. Aadil Batla, Ph.D Scholar, School of Chemistry and Biochemistry, TIET Patiala for helping in image analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar Arya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, J., Arya, R.K. & Ahuja, S. Drying induced phase separation in poly(styrene)–poly(ethylene glycol)–chlorobenzene system. J Porous Mater 26, 1043–1057 (2019). https://doi.org/10.1007/s10934-018-0704-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0704-2

Keywords

Navigation