Skip to main content
Log in

Preparation and catalytic performance of tungstophosphoric acid anchored to SiO2@graphene aerogel 3D porous catalysts for the synthesis of ethyl levulinate biofuel

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

As fuel additives, ethyl levulinate (EL) can be used up to 5 wt% directly in the regular diesel engines, which can overcome the limited stock of fossil fuels and reduce the environment pollutions to some extent. In this work, the three-dimensional porous hybrids consisting of SiO2 and graphene aerogel, which are denoted as SiO2@GA, are facilely assembled and used as supports for H3PW12O40 (HPW)-based solid acid catalysts. Structural analysis confirms that the resultant HPW/SiO2@GA catalysts possess unique porous structure (SBET ≥ 257 m2 g−1, Vp ≥ 0.450 cm3 g−1) and exhibit excellent catalytic performance in the synthesis of EL by the esterification of levulinic acid (LA) with ethanol. The conversion of LA can be as high as 92.4% under the reaction conditions. Furthermore, various catalytic reaction parameters are also optimized over the 10 wt.% HPW/SiO2@GA catalysts, which exhibit the highest turnover frequency (TOF = 83.91 mmol g−1 h−1) among the resultant catalysts. The results confirm the promising application of the HPW/SiO2@GA heterogeneous catalysts in the synthesis of biofuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Li, W.F. Zhao, Z. Fang, Hydrophobic Pd nanocatalysts for one-pot and high-yield production of liquid furanic biofuels at low temperatures. Appl. Catal. B 215, 18–27 (2017)

    Article  CAS  Google Scholar 

  2. J. Whalen, C. Xu, F. Shen, A. Kumar, M. Eklund, J.Y. Yan, Sustainable biofuel production from forestry, agricultural and waste biomass feedstocks. Appl. Energy 198, 281–283 (2017)

    Article  Google Scholar 

  3. K.Y. Nandiwale, P.S. Niphadkar, S.S. Deshpande, V.V. Bokade, Esterification of renewable levulinic acid to ethyl levulinate biodiesel catalyzed by highly active and reusable desilicated H-ZSM-5. J. Chem. Technol. Biotechnol. 89, 1507–1515 (2014)

    Article  CAS  Google Scholar 

  4. A.G. Khiratkar, K.R. Balinge, M. Krishnamurthy, K.K. Cheralathan, D.S. Patle, V. Singh, S. Arora, P.R. Bhagat, Sulphonic acid-functionalized benzimidazolium based poly ionic liquid catalyzed esterification of levulinic acid. Catal. Lett. 148, 680–690 (2018)

    Article  CAS  Google Scholar 

  5. Y. Kuwahara, T. Fujitani, H. Yamashita, Esterification of levulinic acid with ethanol over sulfated mesoporous zirconosilicatesInfluences of the preparation conditions on the structural properties and catalytic performances. Catal. Today 237, 18–28 (2014)

    Article  CAS  Google Scholar 

  6. Y. Kuwahara, W. Kaburagi, K. Nemoto, T. Fujitani, Esterification of levulinic acid with ethanol over sulfated Si-doped ZrO2 solid acid catalyst: study of the structure-activity relationships. Appl. Catal. A 476, 186–196 (2014)

    Article  CAS  Google Scholar 

  7. N.A.S. Ramli, D. Sivasubramaniam, N.A.S. Amin, Esterification of levulinic acid using ZrO2-supported phosphotungstic acid catalyst for ethyl levulinate production. BioEnergy Res. 10, 1105–1116 (2017)

    Article  CAS  Google Scholar 

  8. M. Wu, X.L. Zhang, X.L. Su, X.Y. Li, X.C. Zheng, X.X. Guan, P. Liu, 3D graphene aerogel anchored tungstophosphoric acid catalysts: characterization and catalytic performance for levulinic acid esterification with ethanol. Catal. Commun. 8, 566–569 (2016)

    Google Scholar 

  9. F.D. Pileidis, M. Tabassum, S. Coutts, M.M. Titirici, Esterification of levulinic acid into ethyl levulinate catalysed by sulfonated hydrothermal carbons. Chin. J. Catal. 35, 929–936 (2014)

    Article  CAS  Google Scholar 

  10. Y. Chen, X.L. Zhang, M.M. Dong, Y.H. Wu, G.P. Zheng, J. Huang, X.X. Guan, X.C. Zheng, MCM-41 immobilized 12-silicotungstic acid mesoporous materials: structural and catalytic properties for esterification of levulinic acid and oleic acid. J. Taiwan Inst. Chem. Eng. 61, 147–155 (2016)

    Article  CAS  Google Scholar 

  11. D.R. Fernandes, A.S. Rocha, E.F. Mai, C.J.A. Mota, V.T. da Silva, Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Appl. Catal. A 425, 199–204 (2012)

    Article  CAS  Google Scholar 

  12. X.H. Liu, T.T. Ma, N. Pinna, J. Zhang, Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 27, 1702168 (2017)

    Article  CAS  Google Scholar 

  13. X.H. Liu, T.T. Ma, L. Sun, Y.S. Xu, J. Zhang, N. Pinna, Enhancing the lithium storage performance of graphene/SnO2 nanorods by a carbon riveting strategy. ChemSusChem 11, 1321–1327 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. T.K. Zhao, X.L. Ji, W.H. Jin, C.Y. Xiong, W.X. Ma, C. Wang, S.C. Duan, A. Dang, H. Li, T.H. Li, S.M. Shang, Z.F. Zhou, Synthesis and electromagnetic wave absorption property of amorphous carbon nanotube networks on a 3D graphene aerogel/BaFe12O19 nanocomposite. J. Alloys Compd. 708, 115–122 (2017)

    Article  CAS  Google Scholar 

  15. A. Krittayavathananon, P. Iamprasertkun, M. Sawangphruk, Enhancing the charge-storage performance of N-doped reduced graphene oxide aerogel supercapacitors by adsorption of the cationic electrolytes with single-stand deoxyribonucleic acid. Carbon 109, 314–320 (2016)

    Article  CAS  Google Scholar 

  16. X. Wang, C.X. Lu, H.F. Peng, X. Zhang, Z.K. Wang, G.K. Wang, Efficiently dense hierarchical graphene based aerogel electrode for supercapacitors. J Power Sources 324, 188–198 (2016)

    Article  CAS  Google Scholar 

  17. A. Ouyang, A.Y. Cao, S. Hu, Y.H. Li, R.Q. Xu, J.Q. Wei, H.W. Zhu, D.H. Wu, Polymer-coated graphene aerogel beads and supercapacitor application. ACS Appl. Mater. Interfaces 8, 11179–11187 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. Z.H. Pan, M.N. Liu, J. Yang, Y.C. Qiu, W.F. Li, Y. Xu, X.Y. Zhang, Y.G. Zhang (2017) High electroactive material loading on a carbon nanotube@3D graphene aerogel for high-performance flexible all-solid-state asymmetric supercapacitors. Adv. Funct. Mater. 27:1701122

    Article  CAS  Google Scholar 

  19. W. Xia, C. Qu, Z.B. Liang, B.T. Zhao, S.G. Dai, B. Qiu, Y. Jiao, Q.B. Zhang, X.Y. Huang, W.H. Guo, D. Dang, R.Q. Zou, D.G. Xia, Q. Xu, M.L. Liu, High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite. Nano Lett. 17, 2788–2795 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. L.J. Xie, F.Y. Su, L.F. Xie, X.M. Li, Z. Liu, Q.Q. Kong, X.H. Guo, Y.Y. Zhang, L. Wan, K.X. Li, C.X. Lv, C.M. Chen, Self-assembled 3D graphene-based aerogel with Co3O4 nanoparticles as high-performance asymmetric supercapacitor electrode. ChemSusChem 8, 2917–2926 (2015)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Zhou, Q. Liu, D.B. Liu, H. Xie, G.X. Wu, W.F. Huang, Y.F. Tian, Q. He, A. Khalil, Y.A. Haleem, T. Xiang, W.S. Chu, C.W. Zou, L. Song, Carbon-coated MoO2 dispersed in three-dimensional graphene aerogel for lithium-ion battery. Electrochim. Acta 174, 8–14 (2015)

    Article  CAS  Google Scholar 

  22. C.H. Tan, J. Cao, A.M. Khattak, F.P. Cai, B. Jiang, G. Yang, S.Q. Hu, High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries. J Power Sources 270, 28–33 (2014)

    Article  CAS  Google Scholar 

  23. D.X. Bai, F. Wang, J.M. Lv, F.Z. Zhang, S.L. Xu, Triple-confined well-dispersed Bi-active NiCo2S4/Ni0.96S on graphene aerogel for high-efficiency lithium storage. ACS Appl. Mater. Interfaces 8, 32853–32861 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. Z. Jiao, L. Chen, J. Si, C.X. Xu, Y. Jiang, Y. Zhu, Y.Q. Yang, B. Zhao, Core-shell Li2S@Li3PS4 nanoparticles incorporated into graphene aerogel for lithium-sulfur batteries with low potential barrier and over potential. J Power Sources 353, 167–175 (2017)

    Article  CAS  Google Scholar 

  25. Y. Xie, Z. Meng, T.W. Cai, W.Q. Han, Effect of boron-doping to the graphene aerogel used as cathode for the lithium-sulfur battery. ACS Appl. Mater. Interfaces 7, 25202–25210 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. G.M. Zhou, E. Paek, G.S. Hwang, A. Manthiram (2016) High-performance lithium-sulfur batteries with a self-supported, 3D Li2S-doped graphene aerogel cathodes. Adv. Energy Mater. 6, 1501355

    Article  CAS  Google Scholar 

  27. W.H. Chen, S.H. Qi, L.Q. Guan, C.T. Liu, S.Z. Cui, C.Y. Shen, L.W. Mi, Pyrite FeS2 microspheres anchoring on reduced graphene oxide aerogel as an enhanced electrode material for sodium ion batteries. J. Mater. Chem. A 5, 5332–5341 (2017)

    Article  CAS  Google Scholar 

  28. J.Y. Hong, E.H. Sohn, S. Park, H.S. Park, Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel. Chem. Eng. J. 269, 229–235 (2015)

    Article  CAS  Google Scholar 

  29. D. Shu, F. Feng, H.L. Han, Z.F. Ma, Prominent adsorption performance of amino-functionalized ultra-light graphene aerogel for methyl orange and amaranth. Chem. Eng. J. 324, 1–9 (2017)

    Article  CAS  Google Scholar 

  30. J.H. Li, J.Y. Li, H. Meng, S.Y. Xie, B.W. Zhang, L.F. Li, H.J. Ma, J.Y. Zhang, M. Yu, Ultra-light, compressible and fire-resistant graphene aerogel as the highly efficient and recyclable absorbent for organic liquids. J. Mater. Chem. A 2, 2934–2941 (2014)

    Article  CAS  Google Scholar 

  31. X. Liu, J.B. Sun, X.T. Zhang, Novel 3D graphene aerogel-ZnO hybrids as efficient detection for NO2 at room temperature. Sens. Actuators B 211, 220–226 (2015)

    Article  CAS  Google Scholar 

  32. L. Li, S.J. He, M.M. Liu, C.M. Zhang, W. Chen, Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal. Chem. 87, 1638–1645 (2015)

    Article  CAS  PubMed  Google Scholar 

  33. H. Long, A. Harley-Trochimczyk, T. Pham, Z.R. Tang, T.L. Shi, A. Zettl, C. Carraro, M.A. Worsley, R. Maboudian, High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 26, 5158–5165 (2016)

    Article  CAS  Google Scholar 

  34. M. Nawaz, W. Miran, J. Jang, D.S. Lee, One-step hydrothermal synthesis of porous 3D reduced graphene oxide/TiO2 aerogel for carbamazepine photodegradation in aqueous solution. Appl. Catal. B 203, 85–95 (2017)

    Article  CAS  Google Scholar 

  35. X.B. Li, S.W. Yang, J. Sun, P. He, X.G. Xu, G.Q. Ding, Tungsten oxide nanowire-reduced graphene oxide aerogel for high-efficiency visible light photocatalysis. Carbon 78, 38–48 (2014)

    Article  CAS  Google Scholar 

  36. C.H.A. Tsang, K.N. Hui, K.S. Hui, L. Ren, Deposition of Pd/graphene aerogel on nickel foam as a binder-free electrode for direct electrooxidation of methanol and ethanol. J. Mater. Chem. A 2, 17986–17993 (2014)

    Article  CAS  Google Scholar 

  37. Y.S. Liu, J. Li, W.Z. Li, Y.M. Li, Q.Y. Chen, F.Q. Zhan, Nitrogen-doped graphene aerogel-supported spinel CoMn2O4 nanoparticles as an efficient catalyst for oxygen reduction reaction. J Power Sources 299, 492–500 (2015)

    Article  CAS  Google Scholar 

  38. X.G. Fu, J.Y. Choi, P.Y. Zamani, G.P. Jiang, M.A. Hoque, F.M. Hassan, Z.W. Chen, Co-N decorated hierarchically porous graphene aerogel for efficient oxygen reduction reaction in acid. ACS Appl. Mater. Interfaces 8, 6488–6495 (2016)

    Article  CAS  PubMed  Google Scholar 

  39. Z.M. Luo, C.L. Tan, X. Zhang, J.Z. Chen, X.H. Cao, B. Li, Y. Zong, L. Huang, X. Huang, L.H. Wang, W. Huang, H. Zhang, Preparation of cobalt sulfide nanoparticle-decorated nitrogen and sulfur Co-doped reduced graphene oxide aerogel used as a highly efficient electrocatalyst for oxygen reduction reaction. Small 12, 5920–5926 (2016)

    Article  CAS  PubMed  Google Scholar 

  40. Z.S. Wu, S.B. Yang, Y. Sun, K. Parvez, X.L. Feng, K. Müllen, 3D Nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 134, 9082–9085 (2012)

    Article  CAS  PubMed  Google Scholar 

  41. H. Yin, C.Z. Zhang, F. Liu, Y.L. Hou, Hybrid of iron nitride and nitrogen-doped graphene aerogel as synergistic catalyst for oxygen reduction reaction. Adv. Funct. Mater. 24, 2930–2937 (2014)

    Article  CAS  Google Scholar 

  42. Y.F. Zhao, X.Q. Xie, J.Q. Zhang, H. Liu, H.J. Ahn, K.N. Sun, G.X. Wang, MoS2 nanosheets supported on 3D graphene aerogel as a highly efficient catalyst for hydrogen evolution. Chem. Eur. J. 21, 15908–15913 (2015)

    Article  CAS  PubMed  Google Scholar 

  43. Z. Chen, Y.M. Zhang, L.C. Zhou, H. Zhu, F. Wan, Y. Wang, D.D. Zhang, Performance of nitrogen-doped graphene aerogel particle electrodes for electro-catalytic oxidation of simulated Bisphenol A wastewaters. J. Hazard. Mater. 332, 70–78 (2017)

    Article  CAS  PubMed  Google Scholar 

  44. L. Roldán, A.M. Benito, E. Garcia-Bordeje, Self-assembled graphene aerogel and nanodiamond hybrids as high performance catalysts in oxidative propane dehydrogenation. J. Mater. Chem. A 3, 24379–24388 (2015)

    Article  CAS  Google Scholar 

  45. W.D. Zhong, X.K. Tian, C. Yang, Z.X. Zhou, X.W. Liu, Y. Li, Active 3D Pd/graphene aerogel catalyst for hydrogen generation from the hydrolysis of ammonia-borane. Int. J. Hydrog. Energy 34, 15225–15235 (2016)

    Article  CAS  Google Scholar 

  46. J.K. Meng, Y. Cao, Y. Suo, Y.S. Liu, J.M. Zhang, X.C. Zheng, Facile fabrication of 3D SiO2@graphene aerogel composites as anode material for lithium ion batteries. Electrochim. Acta 176, 1001–1009 (2015)

    Article  CAS  Google Scholar 

  47. B.B. Dong, B.B. Zhang, H.Y. Wu, S.D. Li, K. Zhang, X.C. Zheng, Direct synthesis, characterization and application in benzaldehyde oxidation of HPWA-SBA-15 mesoporous catalysts. Microporous Mesoporous Mater. 176, 186–193 (2013)

    Article  CAS  Google Scholar 

  48. M. Wu, Q.Q. Zhao, J. Li, X.L. Su, H.Y. Wu, X.X. Guan, X.C. Zheng, Tungstophosphoric acid-based mesoporous materials anchored to MCM-41: characterization and catalytic performance in esterification of levulinic acid with ethanol. J. Porous Mater. 23, 1329–1338 (2016)

    Article  Google Scholar 

  49. S.H. Chai, H.P. Wang, Y. Liang, B.Q. Xu, Sustainable production of acroleingas-phase dehydration of glycerol over 12-tungstophosphoric acid supported on ZrO2 and SiO2. Green Chem. 10, 1087–1093 (2008)

    Article  CAS  Google Scholar 

  50. X.C. Zheng, N. Li, M. Wu, X.X. Guan, X.L. Zhang, Synthesis of biofuel via levulinic acid esterification over porous solid acid consisting of tungstophosphoric acid and reduced graphene oxide. Res. Chem. Intermed. 43, 6651–6664 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the financial supports of the National Natural Science Foundation of Jilin Province (CN) (No. U1304203), the Natural Science Foundation of Henan Province (CN) (No. 162300410258), the Foundation of Henan Educational Committee (No. 16A150046) and the Innovation Foundation of Zhengzhou University (No. 201810459003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiu-Cheng Zheng or Guang-Ping Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 247 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, XC., Li, N., Jiang, S. et al. Preparation and catalytic performance of tungstophosphoric acid anchored to SiO2@graphene aerogel 3D porous catalysts for the synthesis of ethyl levulinate biofuel. J Porous Mater 26, 723–732 (2019). https://doi.org/10.1007/s10934-018-0671-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0671-7

Keywords

Navigation