Journal of Porous Materials

, Volume 26, Issue 2, pp 583–597 | Cite as

Synthesis of highly active and stable Al/Zr pillared clay as catalyst for catalytic wet oxidation of phenol

  • Jeffrey Baloyi
  • Thabang Ntho
  • John MomaEmail author


Natural bentonite clay was used in the synthesis of single and mixed oxide Al/Zr pillared clay catalysts by means of ultrasonic treatment during the aging and intercalation steps. The raw bentonite and pillared clay catalysts were characterized using high resolution scanning electron microscopy with energy dispersive system (HRSEM-EDS), powder X-ray diffraction (PXRD), N2 adsorption/desorption, Fourier transform infrared spectroscopy, thermogravimetric analysis, cation exchange capacity, zeta potential and all the catalysts evaluated in the catalytic wet air oxidation (CWAO) of phenol. Calcination of the synthesized Al/Zr-PILCs at 500 °C for 120 min yielded optimum physical properties with BET surface area of 230 m2/g, pore volume of 0.115 cm3/g and basal spacing of 1.92 nm and with good thermal stability. Complete removal of phenol was obtained after 120 min and 88% TOC was removed after 180 min in aqueous solution under mild reaction conditions of 100 °C and 10 bar after. Catalyst reusability studies showed that the Al/Zr-PILCs catalyst demonstrated excellent chemical and structural stability with insignificant leaching of Zr4+ after six consecutive catalytic runs. The Al/Zr-PILCs catalyst therefore demonstrated excellent catalytic properties in the CWAO of phenol in aqueous solution.


Al/Zr pillared clay Ultrasonic treatment Phenol Catalytic wet air oxidation 



The authors wish to acknowledge financial support from the National Research Foundation (NRF)/Department of Science and Technology (DST) of South Africa under Professional Development Programme (PDP) Project No. 96719 and Mineral Science Council of South Africa (Mintek) under CWO of Wastewater Project No. ADE 164.

Supplementary material

10934_2018_667_MOESM1_ESM.docx (168 kb)
Supplementary material 1 (DOCX 167 KB)


  1. 1.
    X. Sun, C. Wang, Y. Li, W. Wang, J. Wei, Treatment of phenolic wastewater by combined UF and NF/RO processes. Desalination 355, 68–74 (2015)CrossRefGoogle Scholar
  2. 2.
    S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian, A. Najafi, E. Mofarrah, Phenol removal from industrial wastewaters: a short review. Desalin. Water Treat. 53, 2215–2234 (2015)CrossRefGoogle Scholar
  3. 3.
    L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, N. Biswas, A short review of techniques for phenol removal from wastewater. Curr. Pollut. Rep. 2, 157–167 (2016)CrossRefGoogle Scholar
  4. 4.
    E. Aneggi, A. Trovarelli, D. Goi, Degradation of phenol in wastewaters via heterogeneous Fenton-like Ag/CeO2 catalyst. J. Environ. Chem. Eng. 5, 1159–1165 (2017)CrossRefGoogle Scholar
  5. 5.
    H. Ye, X. Zhang, Z. Zhao, B. Song, Z. Zhang, W. Song, Pervaporation performance of surface-modified zeolite/PU mixed matrix membranes for separation of phenol from water. Iran. Polym. J. 26, 193–203 (2017)CrossRefGoogle Scholar
  6. 6.
    E.S.Z. El-Ashtoukhy, Y.A. El-Taweel, O. Abdelwahab, E.M. Nassef, Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor. Int. J. Electrochem. Sci. 8, 1534–1550 (2013)Google Scholar
  7. 7.
    B. van Koppen, B. Schreiner, Moving beyond integrated water resource management: developmental water management in South Africa. Int. J. Water Resour. Dev. 30, 543–558 (2014)CrossRefGoogle Scholar
  8. 8.
    Department of Water Affairs, Water for an Equitable and Sustainable Future (Department of Water Affairs, Pretoria, 2013)Google Scholar
  9. 9.
    P. Kazemi, M. Peydayesh, A. Bandegi, T. Mohammadi, O. Bakhtiari, Stability and extraction study of phenolic wastewater treatment by supported liquid membrane using tributyl phosphate and sesame oil as liquid membrane. Chem. Eng. Res. Des. 92, 375–383 (2014)CrossRefGoogle Scholar
  10. 10.
    G. Yang, H. Chen, H. Qin, X. Zhang, Y. Feng, Effect of nitrogen doping on the catalytic activity of activated carbon and distribution of oxidation products in catalytic wet oxidation of phenol. Can. J. Chem. Eng. 95, 1518 (2017)CrossRefGoogle Scholar
  11. 11.
    J. Guo, M. Al-Dahhan, Activity and stability of iron-containing pillared clay catalysts for wet air oxidation of phenol. Appl. Catal. A 299, 175–184 (2006)CrossRefGoogle Scholar
  12. 12.
    J. Guo, M. Al-Dahhan, Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst. Ind. Eng. Chem. Res. 42, 2450–2460 (2003)CrossRefGoogle Scholar
  13. 13.
    M. Ding, S. Zuo, C. Qi, Preparation and characterization of novel composite AlCr-pillared clays and preliminary investigation for benzene adsorption. Appl. Clay Sci. 115, 9–16 (2015)CrossRefGoogle Scholar
  14. 14.
    A. Olaya, S. Moreno, R. Molina, Synthesis of pillared clays with Al13-Fe and Al13-Fe-Ce polymers in solid state assisted by microwave and ultrasound: characterization and catalytic activity. Appl. Catal. A 370, 7–15 (2009)CrossRefGoogle Scholar
  15. 15.
    J.T. Kloprogge, L.V. Duong, R.L. Frost, A review of the synthesis and characterisation of pillared clays and related porous materials for cracking of vegetable oils to produce biofuels. Environ. Geol. 47, 967–981 (2005)CrossRefGoogle Scholar
  16. 16.
    M.A. Vicente, A. Gil, F. Bergaya, Pillared clays and clay minerals. Handb. Clay Sci. 5, 524 (2013)Google Scholar
  17. 17.
    J. Baloyi, T. Ntho, J. Moma, Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: a review. RSC Adv. 8, 5197–5211 (2018)CrossRefGoogle Scholar
  18. 18.
    F. Tomul, The effect of ultrasonic treatment on iron–chromium pillared bentonite synthesis and catalytic wet peroxide oxidation of phenol. Appl. Clay Sci. 120, 121–134 (2016)CrossRefGoogle Scholar
  19. 19.
    V. Singh, V. Sapehiyia, G.L. Kad, Ultrasound and microwave activated preparation of ZrO2-pillared clay composite: catalytic activity for selective, solventless acylation of 1, n-diols. J. Mol. Catal. A 210, 119–124 (2004)CrossRefGoogle Scholar
  20. 20.
    G. Fetter, P. Bosch, Microwave effect on clay pillaring, in Pillared Clays and Related Catalysts (Springer, New York, 2010), pp. 1–21Google Scholar
  21. 21.
    Z.U.O. Shufeng, Z. Renxian, Q.I. Chenze, Synthesis and characterization of aluminum and Al/REE pillared clays and supported palladium catalysts for benzene oxidation. J. Rare Earths 29, 52–57 (2011)CrossRefGoogle Scholar
  22. 22.
    C.B. Molina, J.A. Casas, J.A. Zazo, J.J. Rodriguez, A comparison of Al-Fe and Zr-Fe pillared clays for catalytic wet peroxide oxidation. Chem. Eng. J. 118, 29–35 (2006)CrossRefGoogle Scholar
  23. 23.
    S. Mnasri-Ghnimi, N. Frini-Srasra, Promoting effect of cerium on the characteristic and catalytic activity of Al, Zr, and Al–Zr pillared clay. Appl. Clay Sci. 88, 214–220 (2014)CrossRefGoogle Scholar
  24. 24.
    I. Fatimah, Preparation of ZrO2/Al2O3-montmorillonite composite as catalyst for phenol hydroxylation. J. Adv. Res. 5, 663–670 (2014)CrossRefGoogle Scholar
  25. 25.
    W. Ye, B. Zhao, H. Gao, J. Huang, X. Zhang, Preparation of highly efficient and stable Fe, Zn, Al-pillared montmorillonite as heterogeneous catalyst for catalytic wet peroxide oxidation of Orange II. J. Porous Mater. 23, 301–310 (2016)CrossRefGoogle Scholar
  26. 26.
    G. Fetter, G. Heredia, L.A. Velázquez, A.M. Maubert, P. Bosch, Synthesis of aluminum-pillared montmorillonites using highly concentrated clay suspensions. Appl. Catal. A 162, 41–45 (1997)CrossRefGoogle Scholar
  27. 27.
    G. Fetter, G. Heredia, A.M. Maubert, P. Bosch, Synthesis of Al-intercalated montmorillonites using microwave irradiation. J. Mater. Chem. 6, 1857–1858 (1996)CrossRefGoogle Scholar
  28. 28.
    S.P. Katdare, V. Ramaswamy, A.V. Ramaswamy, Factors affecting the preparation of alumina pillared montmorillonite employing ultrasonics. Microporous Mesoporous Mater. 37, 329–336 (2000)CrossRefGoogle Scholar
  29. 29.
    C. Ma, Y. Wen, Q. Yue, A. Li, J. Fu, N. Zhang, H. Gai, J. Zheng, B.H. Chen, Oxygen-vacancy-promoted catalytic wet air oxidation of phenol from MnOx–CeO2. RSC Adv. 7, 27079–27088 (2017)CrossRefGoogle Scholar
  30. 30.
    E. Nissam, S. Sugunan, Catalysis by Modified Pillared Clays and Porous Clay Heterostructures (2014)Google Scholar
  31. 31.
    F. Tomul, S. Balci, Characterization of Al, Cr-pillared clays and CO oxidation. Appl. Clay Sci. 43, 13–20 (2009)CrossRefGoogle Scholar
  32. 32.
    R.E. Grim, Clay Mineralogy, 2nd edn. (McGraw-Hill, New York, 1968), pp. 185–224Google Scholar
  33. 33.
    W.M. Gitari, Attenuation of metal species in acidic solutions using bentonite clay: implications for acid mine drainage remediation. Toxicol. Environ. Chem. 96, 201–217 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Benjelloun, P. Cool, T. Linssen, E.F. Vansant, Acidic porous clay heterostructures: study of their cation exchange capacity. Microporous Mesoporous Mater. 49, 83–94 (2001)CrossRefGoogle Scholar
  35. 35.
    H. Zhang, X. Liang, C. Yang, C. Niu, J. Wang, X. Su, Nano γ-Fe2O3/bentonite magnetic composites: synthesis, characterization and application as adsorbents. J. Alloy. Compd. 688, 1019–1027 (2016)CrossRefGoogle Scholar
  36. 36.
    W. Huang, Y.-K. Leong, T. Chen, P.-I. Au, X. Liu, Z. Qiu, Surface chemistry and rheological properties of API bentonite drilling fluid: pH effect, yield stress, zeta potential and ageing behaviour. J. Petrol. Sci. Eng. 146, 561–569 (2016)CrossRefGoogle Scholar
  37. 37.
    X. Peng, Z. Luan, F. Chen, B. Tian, Z. Jia, Adsorption of humic acid onto pillared bentonite. Desalination 174, 135–143 (2005)CrossRefGoogle Scholar
  38. 38.
    J. Zhou, P. Wu, Z. Dang, N. Zhu, P. Li, J. Wu, X. Wang, Polymeric Fe/Zr pillared montmorillonite for the removal of Cr (VI) from aqueous solutions. Chem. Eng. J. 162, 1035–1044 (2010)CrossRefGoogle Scholar
  39. 39.
    S.I. Rathnayake, W.N. Martens, Y. Xi, R.L. Frost, G.A. Ayoko, Remediation of Cr (VI) by inorganic-organic clay. J. Colloid Interface Sci. 490, 163–173 (2017)CrossRefGoogle Scholar
  40. 40.
    H. Ma, Y. Hei, L. Hua, Y. Guo, Y. Yang, C.-l. Yu, X.-R. Qiao, Fabrication of zirconium-pillared montmorillonite porous ceramic as adsorbents for Cr3+ removal and recycling. Ceram. Int. 42, 14903–14909 (2016)CrossRefGoogle Scholar
  41. 41.
    P. Kumararaja, K.M. Manjaiah, S.C. Datta, B. Sarkar, Remediation of metal contaminated soil by aluminium pillared bentonite: synthesis, characterisation, equilibrium study and plant growth experiment. Appl. Clay Sci. 137, 115–122 (2017)CrossRefGoogle Scholar
  42. 42.
    V. Masindi, M.W. Gitari, H. Tutu, M. DeBeer, Synthesis of cryptocrystalline magnesite–bentonite clay composite and its application for neutralization and attenuation of inorganic contaminants in acidic and metalliferous mine drainage. J. Water Process Eng. 15, 2 (2015)CrossRefGoogle Scholar
  43. 43.
    V. Masindi, W.M. Gitari, K.G. Pindihama, Synthesis of cryptocrystalline magnesite/bentonite clay composite and its application for removal of phosphate from municipal wastewaters. Environ. Technol. 37, 603–612 (2016)CrossRefGoogle Scholar
  44. 44.
    M. El Miz, S. Salhi, I. Chraibi, A. El Bachiri, M.-L. Fauconnier, A. Tahani, Characterization and adsorption study of thymol on pillared bentonite. Open J. Phys. Chem. 4, 98 (2014)CrossRefGoogle Scholar
  45. 45.
    S. Mnasri, N. Frini-Srasra, Influence of aluminium incorporation in the preparation of zirconia-pillared clay and catalytic performance in the acetalization reaction. Clay Miner. 47, 453 (2012)CrossRefGoogle Scholar
  46. 46.
    G. Fetter, V. Hernández, V. Rodríguez, M.A. Valenzuela, V.H. Lara, P. Bosch, Effect of microwave irradiation time on the synthesis of zirconia-pillared clays. Mater. Lett. 57, 1220–1223 (2003)CrossRefGoogle Scholar
  47. 47.
    F. Tomul, Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite. Appl. Surf. Sci. 258, 1836–1848 (2011)CrossRefGoogle Scholar
  48. 48.
    F.T. Basoglu, S. Balci, Catalytic properties and activity of copper and silver containing Al-pillared bentonite for CO oxidation. J. Mol. Struct. 1106, 382–389 (2016)CrossRefGoogle Scholar
  49. 49.
    L.M. Wu, D.S. Tong, L.Z. Zhao, W.H. Yu, C.H. Zhou, H. Wang, Fourier transform infrared spectroscopy analysis for hydrothermal transformation of microcrystalline cellulose on montmorillonite. Appl. Clay Sci. 95, 74–82 (2014)CrossRefGoogle Scholar
  50. 50.
    S. Acemana, N. Lahav, S. Yariv, A thermo-FTIR-spectroscopy analysis of Al-pillared smectites differing in source of charge, in KBr disks. Thermochim. Acta 340, 349–366 (1999)CrossRefGoogle Scholar
  51. 51.
    F. Tomul, S. Balci, Synthesis and characterization of Al-pillared interlayered bentonites. Gazi Univ. J. Sci. 21, 21–31 (2008)Google Scholar
  52. 52.
    B. Caglar, B.Q. Afsin, A. Tabak, E. Eren, Characterization of the cation-exchanged bentonites by XRPD, ATR, DTA/TG analyses and BET measurement. Chem. Eng. J. 149, 242–248 (2009)CrossRefGoogle Scholar
  53. 53.
    B. Caglar, B. Afsin, A. Tabak, E. Eren, Characterization of the cation-exchanged bentonites by XRPD, ATR, DTA/TG analyses and BET measurement. Chem. Eng. J. 149, 242–248 (2009)CrossRefGoogle Scholar
  54. 54.
    Y. Gao, W. Li, H. Sun, Z. Zheng, X. Cui, H. Wang, F. Meng, A facile in situ pillaring method—the synthesis of Al-pillared montmorillonite. Appl. Clay Sci. 88, 228–232 (2014)CrossRefGoogle Scholar
  55. 55.
    W. Schwieger, G. Lagaly, S.M. Auerbach, K.A. Carrado, P.K. Dutta, Handbook of Layered Materials (Marcel Dekker, Inc., New York, 2004)Google Scholar
  56. 56.
    P. Canizares, J.L. Valverde, M.R.S. Kou, C.B. Molina, Synthesis and characterization of PILCs with single and mixed oxide pillars prepared from two different bentonites. A comparative study. Microporous Mesoporous Mater. 29, 267–281 (1999)CrossRefGoogle Scholar
  57. 57.
    S.V. Awate, S.B. Waghmode, M.S. Agashe, Synthesis, characterization and catalytic evaluation of zirconia-pillared montmorillonite for linear alkylation of benzene. Catal. Commun. 5, 407–411 (2004)CrossRefGoogle Scholar
  58. 58.
    H. Jung, S.-M. Paek, J.-B. Yoon, J.-H. Choy, Zr K-edge XAS study on ZrO2-pillared aluminosilicate. J. Porous Mater. 14, 369–377 (2007)CrossRefGoogle Scholar
  59. 59.
    S. Mnasri, N. Hamdi, N. Frini-Srasra, E. Srasra, Acid–base properties of pillared interlayered clays with single and mixed Zr–Al oxide pillars prepared from Tunisian-interstratified illite–smectite. Arab. J. Chem. (2014)Google Scholar
  60. 60.
    K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  61. 61.
    S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic Press, London, 1967)CrossRefGoogle Scholar
  62. 62.
    M. Lefrancois, G. Malbois, The nature of the acidic sites on mordenite. J. Catal. 20, 350–358 (1971)CrossRefGoogle Scholar
  63. 63.
    M. Kojima, M.W. Rautenbach, C.T. O’Connor, Acidity characterization of ion-exchanged mordenite. J. Catal. 112, 495–504 (1988)CrossRefGoogle Scholar
  64. 64.
    B.T. Loveless, A. Gyanani, D.S. Muggli, Discrepancy between TPD-and FTIR-based measurements of Brønsted and Lewis acidity for sulfated zirconia. Appl. Catal. B 84, 591–597 (2008)CrossRefGoogle Scholar
  65. 65.
    F. Kooli, J. Bovey, W. Jones, Dependence of the properties of titanium-pillared clays on the hostmatrix: a comparison of montmorillonite, saponite and rectorite pillaredmaterials. J. Mater. Chem. 7, 153–158 (1997)CrossRefGoogle Scholar
  66. 66.
    C. Breen, A.T. Deane, J.J. Flynn, The acidity of trivalent cation-exchanged montmorillonite. Temperature-programmed desorption and infrared studies of pyridine and n-butylamine. Clay Miner. 22, 169–178 (1987)CrossRefGoogle Scholar
  67. 67.
    N. Rinaldi, A. Kristiani, Physicochemical of pillared clays prepared by several metal oxides, in AIP Conference Proceedings, pp. 020063Google Scholar
  68. 68.
    J.L. Valverde, P. Cañizares, M.R.S. Kou, C.B. Molina, Enhanced thermal stability of Al-pillared smectites modified with Ce and La. Clays Clay Miner. 48, 424–432 (2000)CrossRefGoogle Scholar
  69. 69.
    H.J. Chae, I.-S. Nam, S.W. Ham, S.B. Hong, Physicochemical characteristics of pillared interlayered clays. Catal. Today 68, 31–40 (2001)CrossRefGoogle Scholar
  70. 70.
    J. Pires, J. Francisco, A. Carvalho, M. Brotas, A.R. de Carvalho, C. Silva, B. Freire, de Castro, Development of novel pillared clays for the encapsulation of inorganic complexes. Langmuir 20, 2861–2866 (2004)CrossRefGoogle Scholar
  71. 71.
    S. Yang, X. Li, W. Zhu, J. Wang, C. Descorme, Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon 46, 445–452 (2008)CrossRefGoogle Scholar
  72. 72.
    S. Yang, Y. Cui, Y. Sun, H. Yang, Graphene oxide as an effective catalyst for wet air oxidation of phenol. J. Hazard. Mater. 280, 55–62 (2014)CrossRefGoogle Scholar
  73. 73.
    R.P. Rocha, A.G. Gonçalves, L.M. Pastrana-Martínez, B.C. Bordoni, O. Soares, J.J.M. Órfão, J.L. Faria, J.L. Figueiredo, A.M.T. Silva, M.F.R. Pereira, Nitrogen-doped graphene-based materials for advanced oxidation processes. Catal. Today 249, 192–198 (2015)CrossRefGoogle Scholar
  74. 74.
    A.E. de Los Monteros, G. Lafaye, A. Cervantes, G.Del Angel, J. Barbier Jr., G. Torres, Catalytic wet air oxidation of phenol over metal catalyst (Ru, Pt) supported on TiO2–CeO2 oxides. Catal. Today 258, 564–569 (2015)CrossRefGoogle Scholar
  75. 75.
    A. Quintanilla, J.A. Casas, A.F. Mohedano, J.J. Rodríguez, Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst. Appl. Catal. B 67, 206–216 (2006)CrossRefGoogle Scholar
  76. 76.
    R.R. Zapico, P. Marín, F.V. Díez, S. Ordóñez, Influence of operation conditions on the copper-catalysed homogeneous wet oxidation of phenol: development of a kinetic model. Chem. Eng. J. 270, 122–132 (2015)CrossRefGoogle Scholar
  77. 77.
    A. Santos, P. Yustos, A. Quintanilla, S. Rodrıguez, F. Garcıa-Ochoa, Route of the catalytic oxidation of phenol in aqueous phase. Appl. Catal. B 39, 97–113 (2002)CrossRefGoogle Scholar
  78. 78.
    G. Yang, H. Chen, H. Qin, X. Zhang, Y. Feng, Effect of nitrogen doping on the catalytic activity of activated carbon and distribution of oxidation products in catalytic wet oxidation of phenol. Can. J. Chem. Eng. 95, 1518–1525 (2017)CrossRefGoogle Scholar
  79. 79.
    F. Arena, R. Di Chio, B. Gumina, L. Spadaro, G. Trunfio, Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorg. Chim. Acta 431, 101–109 (2015)CrossRefGoogle Scholar
  80. 80.
    H. Sassi, G. Lafaye, H.B. Amor, A. Gannouni, M.R. Jeday, J. Barbier, Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation. Front. Environ. Sci. Eng. 12, 2 (2018)CrossRefGoogle Scholar
  81. 81.
    S. Jafarinejad, Cost-Effective Catalytic Materials for AOP Treatment Units (2017)Google Scholar
  82. 82.
    M. Kurian, V.R. Remya, C. Kunjachan, Catalytic wet oxidation of chlorinated organics at mild conditions over iron doped nanoceria. Catal. Commun. 99, 75–78 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Molecular Science Institute, School of ChemistryUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.Advanced Materials DivisionMINTEKRandburgSouth Africa

Personalised recommendations