Advertisement

Preparation and characterization of porous HMO/PAN composite adsorbent and its adsorption–desorption properties in brine

  • Qingyuan Jia
  • Jun Wang
  • Ruili GuoEmail author
Article
  • 58 Downloads

Abstract

Lithium-ion sieve (LIS) formation technology for Li+ recovery from seawater or brine is very important. In this article, the different types of H1.6Mn1.6O4 (HMO) composite adsorbents, including granular (HMO/PAN-G), nanofiber flat-sheet membrane (HMO/PAN-NM), flat-sheet membrane (HMO/PAN-FM), and hollow-fiber membrane (HMO/PAN-HFM) adsorbents, were prepared via the phase-inversion method using hydrophilic polyacrylonitrile (PAN) and Li1.6Mn1.6O4 (LMO) as the binder and precursor, respectively. The effects of the formation methods on the morphology, structure, and Li+ adsorption performance of the different types of HMO/PAN composite adsorbents were investigated. The adsorption performance of HMO/PAN-HFM was better than HMO/PAN-G and HMO/PAN-FM owing to its high porosity (88.1%). Results indicated that HMO/PAN-HFM (HMO = 50 wt%) exhibits optimal adsorption performance, with an optimum adsorption capacity of 18.1 mg g−1, corresponding to 91.4% of the adsorption capacity of HMO powder (19.8 mg g−1). Using Li+ solutions and simulated brine, the Li+ adsorption percentages were found to be 91.8% and 87.6%, respectively, at 12 h. The Li+ selectivity of HMO/PAN-HFM was 183–453 times those of other metal ions. These results indicate that PAN is an excellent carrier of HMO, and high-porosity HMO/PAN-HFM is promising as an LIS composite adsorbent.

Keywords

Lithium-ion sieve Polyacrylonitrile Porous structure Membrane adsorbent Brine 

Notes

Acknowledgements

The authors would like to thank the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R46).

References

  1. 1.
    Q. Yu, K. Sasaki, T. Hirajima, J. Hazard Mater. 262, 38 (2013)CrossRefPubMedGoogle Scholar
  2. 2.
    P. Meshram, B.D. Pandey, T.R. Mankhand, Hydrometallurgy 150, 192 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Abe, M. Tsuji, J. Radioanal. Chem. 54, 137 (1979)CrossRefGoogle Scholar
  4. 4.
    K. Ooi, Y. Miyai, S. Katoh, H. Maeda, M. Abe, Langmuir 5, 150 (1989)CrossRefGoogle Scholar
  5. 5.
    X.M. Shen, A. Clearfield, J. Solid State Chem. 64, 270 (1986)CrossRefGoogle Scholar
  6. 6.
    X. Yang, H. Kanoh, W. Tang, K. Ooi, J. Mater. Chem. 10, 1903 (2000)CrossRefGoogle Scholar
  7. 7.
    S.Y. Sun, J.L. Xiao, J. Wang, X. Song, J.G. Yu, Ind. Eng. Chem. Res. 53, 15517 (2014)CrossRefGoogle Scholar
  8. 8.
    H.J. Hong, I.S. Park, T. Ryu, J. Ryu, B.G. Kim, K.S. Chung, Chem. Eng. J. 234, 16 (2013)CrossRefGoogle Scholar
  9. 9.
    G. Xiao, K. Tong, L. Zhou, J. Xiao, S. Sun, P. Li, J. Yu, Ind. Eng. Chem. Res. 51, 10921 (2012)CrossRefGoogle Scholar
  10. 10.
    H.J. Hong, I.S. Park, J. Ryu, T. Ryu, B.G. Kim, K.S. Chung, Chem. Eng. J. 271, 71 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Han, H. Kim, J. Park, Chem. Eng. J. 210, 482 (2012)CrossRefGoogle Scholar
  12. 12.
    J.L. Xiao, S.Y. Sun, X. Song, P. Li, J.G. Yu, Chem. Eng. J. 279, 659 (2015)CrossRefGoogle Scholar
  13. 13.
    L.W. Ma, B.Z. Chen, Y. Chen, X.C. Shi, Microporous Mesoporous Mater. 142, 147 (2011)CrossRefGoogle Scholar
  14. 14.
    G.M. Nisola, L.A. Limjuco, E.L. Vivas, C.P. Lawagon, M.J. Park, H.K. Shon, N. Mittal, I.W. Nah, H. Kim, W.J. Chung, Chem. Eng. J. 280, 536 (2015)CrossRefGoogle Scholar
  15. 15.
    G. Zhu, P. Wang, P. Qi, C. Gao, Chem. Eng. J. 235, 340 (2014)CrossRefGoogle Scholar
  16. 16.
    M.J. Park, G.M. Nisola, E.L. Vivas, L.A. Limjuco, C.P. Lawagon, J.G. Seo, H. Kim, H.K. Shon, W.J. Chung, J. Membr. Sci. 510, 141 (2016)CrossRefGoogle Scholar
  17. 17.
    W.J. Chung, R.E.C. Torrejos, M.J. Park, E.L. Vivas, L.A. Limjuco, C.P. Lawagon, K.J. Parohinog, S.P. Lee, H.K. Shon, H. Kim, G.M. Nisola, Chem. Eng. J. 309, 49 (2017)CrossRefGoogle Scholar
  18. 18.
    K. Yoon, K. Kim, X. Wang, D. Fang, B.S. Hsiao, B. Chu, Polymer 47, 2434 (2006)CrossRefGoogle Scholar
  19. 19.
    J.L. Xiao, S.Y. Sun, J. Wang, P. Li, J.G. Yu, Ind. Eng. Chem. Res. 52, 11967 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Wang, Q.Y. Jia, R.L. Guo, J.S. Zhang, CIESC J. 67, 4282 (2016)Google Scholar
  21. 21.
    W. Li, Z. Yang, G. Zhang, Q. Meng, Ind. Eng. Chem. Res. 52, 6492 (2013)CrossRefGoogle Scholar
  22. 22.
    D.Q. Dong, W.N. Liu, Y.F. Liu, D.Q. Dong, W.N. Liu, Y.F. Liu, Chin. J. Inorg. Chem. 25, 1279 (2009)Google Scholar
  23. 23.
    J.S. Yuan, H.B. Yin, Z.Y. Ji, H.N. Deng, Ind. Eng. Chem. Res. 53, 9889 (2014)CrossRefGoogle Scholar
  24. 24.
    R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Ind. Eng. Chem. Res. 40, 2054 (2001)CrossRefGoogle Scholar
  25. 25.
    X. Shi, D. Zhou, Z. Zhang, L. Yu, H. Xu, B. Chen, X. Yang, Hydrometallurgy 110, 99 (2011)CrossRefGoogle Scholar
  26. 26.
    T. Ryu, J. Shin, J. Ryu, I. Park, H. Hong, B.G. Kim, K.S. Chung, Mater. Trans. 54, 1029 (2013)CrossRefGoogle Scholar
  27. 27.
    A. Umeno, Y. Miyai, N. Takagi, R. Chitrakar, A. Kohji Sakane, K. Ooi, Ind. Eng. Chem. Res. 41, 4281 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang BingtuanShihezi UniversityShiheziChina

Personalised recommendations