Copper oxide modified SBA-15 for the selective vapour phase dehydrogenation of cyclohexanol to cyclohexanone

  • Chandralayam Soumini
  • Sankaran SugunanEmail author
  • Suja Haridas


Catalysts with efficient dispersion, high activity, and minimum leaching of active component are evergreen areas of interest in the field of catalysis. Incorporation of active component on high surface area materials helps to attain uniform dispersion, increased activity and stability for the catalyst system. Mesoporous materials like SBA-15 are widely used as catalyst support because of its high surface area, thermal and hydrothermal stability, uniform hexagonal mesopores, etc. Here we have synthesized copper oxide modified SBA-15 catalysts with various weight percentages of copper metal and its activity towards the dehydrogenation of cyclohexanol was studied. The reaction was monitored on a continuous flow fixed bed gas phase reactor. Various parameters for the reaction were optimized. SBA-15 with less than 10% Cu content was observed to be the most effective catalyst. The catalysts were found to be competent for the reaction with efficient dispersion of the active component and minimum deactivation.


SBA-15 Cyclohexanol Dehydrogenation Cyclohexanone 



The authors acknowledge their sincere gratitude to University Grants Commission (UGC), Govt. of India for the award of Junior Research Fellowship and teacher fellowship under FDP scheme to SC. SC sincerely acknowledges Prof. B. Viswanathan, NCCR, IIT Chennai and Dr. N. N. Binitha, S.N.G.S College, Pattambi for their help and support. The authors also acknowledge SAIF CUSAT, India, St. Thomas College, Pala, Kerala, India, CSMCRI, Bhavnagar, Gujarat, India and Amrita Institute of Nano Sciences, Kochi, Kerala, India for various analyses.

Supplementary material

10934_2018_658_MOESM1_ESM.docx (98 kb)
Supplementary material 1 (DOCX 97 KB)


  1. 1.
    G.S. Jeon, J.S. Chug, Appl. Catal. A 115, 29–44 (1994)CrossRefGoogle Scholar
  2. 2.
    G.S. Jeon, J.S. Chung, Korean J. Chem. Eng. 14, 79–87 (1997)CrossRefGoogle Scholar
  3. 3.
    Z. Yang, J. Li, X.G. Yang, X.F. Xie, Y. Wu, J. Mol. Catal. Chem. 241, 15–22 (2005)CrossRefGoogle Scholar
  4. 4.
    D. Ji, W. Zhu, Z. Wang, G. Wang, Catal. Commun. 8, 1891–1895 (2007)CrossRefGoogle Scholar
  5. 5.
    R. Li, X. Yan, X. Zhu, D. Shou, X. Zhou, Y. Dai, Y. Yang, Catal. Today 298, 269–275 (2017)CrossRefGoogle Scholar
  6. 6.
    F. Su, Y. Liu, L.-C. Wang, Y. Cao, H. He, K. Fan, Angew. Chem. Int. Ed. 47, 334–337 (2008)CrossRefGoogle Scholar
  7. 7.
    L. Chen, T. Zhou, L. Chen, Y. Ye, Z. Qi, H. Freund, K. Sundmacher, Chem. Commun. 47, 9354–9356 (2011)CrossRefGoogle Scholar
  8. 8.
    I.F. Silva, J. Vital, A.M. Ramos, H. Valente, A.M.B.D. Rego, M.J. Reis, Carbon 36, 1159–1165 (1998)CrossRefGoogle Scholar
  9. 9.
    M.I. Ikrumullah, Catal. Commun. 5, 1–4 (2004)CrossRefGoogle Scholar
  10. 10.
    G. Gut, R. Jaeger, Chem. Eng. Sci. 37, 319–326 (1982)CrossRefGoogle Scholar
  11. 11.
    F.M. Bautista, J.M. Campelo, A. Garcia, D. Luna, J.M. Marinas, R.A. Quirós, A.A. Romero, Appl. Catal. A 243, 93–107 (2003)CrossRefGoogle Scholar
  12. 12.
    G.K. Rao, K.S.R. Rao, P.K. Rao, Catal. Lett. 59, 157–160 (1999)CrossRefGoogle Scholar
  13. 13.
    B.M. Nagaraja, V.Siva Kumar, V. Shashikal, A.H. Padmasri, B. Sreevardhan Reddy, S. Reddy, B. David, K.S.R. Raju, Rao, J. Mol. Catal. A 223, 339–345 (2004)CrossRefGoogle Scholar
  14. 14.
    T.W. Kim, F. Kleitz, B. Paul, R. Ryoo, J. Am. Chem. Soc. 127, 7601–7610 (2005)CrossRefPubMedGoogle Scholar
  15. 15.
    M. Popova, M. Dimitrov, V.D. Santo, N. Ravasio, N. Scotti, Catal. Commun. 17, 150–153 (2012)CrossRefGoogle Scholar
  16. 16.
    W.S. Chen, M.D. Lee, J.F. Lee, Appl. Catal. A 83, 201–211 (1992)CrossRefGoogle Scholar
  17. 17.
    C. Sivaraj, S.T. Srinivas, V.N. Rao, P.K. Rao, J. Mol. Catal. 60, L23–L28 (1990)CrossRefGoogle Scholar
  18. 18.
    Z. Wang, X. Liu, D.W. Rooney, P. Hu, Surf. Sci. 640, 181–189 (2015)CrossRefGoogle Scholar
  19. 19.
    K.V.R. Chary, K.K. Seela, D. Naresh, P. Ramakanth, Catal. Commun. 9, 75–81 (2008)CrossRefGoogle Scholar
  20. 20.
    V.S. Kumar, S.S. Reddy, A.H. Padmasri, B.D. Raju, I.A. Reddy, K.S.R. Rao, Catal. Commun. 8, 899–905 (2007)CrossRefGoogle Scholar
  21. 21.
    K.V.R. Chary, G.V. Sagar, D. Naresh, K.K. Seela, B. Sridhar, J. Phys. Chem. B 109, 9437–9444 (2005)CrossRefPubMedGoogle Scholar
  22. 22.
    G.S. Jeon, G. Seo, J.S. Chung, Korean J. Chem. Eng. 13, 412–414 (1996)CrossRefGoogle Scholar
  23. 23.
    N.P. Tangale, P.S. Niphadkar, S.S. Deshpande, P.N. Joshi, Appl. Catal. A 467, 421–429 (2013)CrossRefGoogle Scholar
  24. 24.
    F.M.T. Mendes, M. Schmal, Appl. Catal. A 163, 153–164 (1997)CrossRefGoogle Scholar
  25. 25.
    D.V. Cesar, C.A. PereÂz, V.M.M. Salim, M. Schmal, Appl. Catal. A 176, 205–212 (1999)CrossRefGoogle Scholar
  26. 26.
    B. Sridevi, P. Nagaiah, A.H. Padmasri, B.D. Raju, K.S.R. Rao, J. Chem. Sci. 129, 601–608 (2017)CrossRefGoogle Scholar
  27. 27.
    G.V. Sagar, P.V.R. Rao, C.S. Srikanth, K.V.R. Chary, J. Phys. Chem. B 110, 13881–13888 (2006)CrossRefPubMedGoogle Scholar
  28. 28.
    J. Taghavimoghaddam, G.P. Knowles, A.L. Chaffee, J. Mol. Catal. A 358, 79–88 (2012)CrossRefGoogle Scholar
  29. 29.
    A. Guram, A. Hagemeyer, C.G. Lugmair, H.W. Turner, A.F. Volpe, W.H. Weinberg, K. Yaccato, Adv. Synth. Catal. 346, 215–230 (2004)CrossRefGoogle Scholar
  30. 30.
    P. Gallezot, Catal. Today 37, 405–418 (1997)CrossRefGoogle Scholar
  31. 31.
    S. Parambadath, A.P. Sing, Catal. Today 141, 161–167 (2009)CrossRefGoogle Scholar
  32. 32.
    D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548–552 (1998)CrossRefPubMedGoogle Scholar
  33. 33.
    P. Burroughs, A. Hamnett, A.F. Orchard, G. Thornton, J. Chem. Soc. Dalton Trans. 17, 1686–1698 (1976)CrossRefGoogle Scholar
  34. 34.
    A. Kumar, A. Saxena, A. De, R. Shankar, S. Mozumdar, RSC Adv. 3, 5015–5021 (2013)CrossRefGoogle Scholar
  35. 35.
    Q.B. Zhang, D. Xu, T.F. Hung, K. Zhang, Nanotechnology 23, 1–13 (2013)Google Scholar
  36. 36.
    M.K. Naskar, S. Ghosh, R. Das, I.H. Chowdhury, P. Bhanja, RSC Adv. 5, 101519–101524 (2015)CrossRefGoogle Scholar
  37. 37.
    Y. Jiang, X. He, W. Zhang, X. Li, N. Guo, Y. Zhao, G. Xu, W. Li, RSC Adv. 5, 73340–73345 (2015)CrossRefGoogle Scholar
  38. 38.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  39. 39.
    L.F. Gutierrez, S. Hamoudi, K. Belkacemi, Appl. Catal. A 425, 213–223 (2012)CrossRefGoogle Scholar
  40. 40.
    Y. Kong, H. Zhu, G. Yang, X. Guo, W. Hou, Q. Yan, M. Gu, C. Hu, Adv. Funct. Mater. 14, 816–820 (2004)CrossRefGoogle Scholar
  41. 41.
    Y. Kong, X. Guo, F. Zhang, S. Jiang, J. Wang, Y. Lu, Q. Yan, Mater. Lett. 59, 3099–3101 (2005)CrossRefGoogle Scholar
  42. 42.
    L. Chmielarz, P. Kustrowski, M. Drozdek, R. Dziembaj, P. Cool, E.F. Vansant, Catal. Today 114, 319–325 (2006)CrossRefGoogle Scholar
  43. 43.
    H. Zhang, C. Tang, Y. Lv, C. Sun, F. Gao, L. Dong, Y. Chen, J. Colloid Interface Sci. 380, 16–24 (2012)CrossRefPubMedGoogle Scholar
  44. 44.
    M. Shimokawabe, N. Takezawa, H. Kobayashi, Appl. Catal. 2, 379–387 (1982)CrossRefGoogle Scholar
  45. 45.
    G.Y. Zhang, J.L. Long, X.X. Wang, Z.Z. Zhang, W.X. Dai, P. Liu, Z.H. Li, L. Wu, X.Z. Fu, Langmuir 26, 1362–1371 (2010)CrossRefPubMedGoogle Scholar
  46. 46.
    J.S. Li, Y.X. Hao, H.J. Li, M.Y. Xia, X.Y. Sun, L.J. Wang, Micropor. Mesopor. Mater. 120, 421–425 (2009)CrossRefGoogle Scholar
  47. 47.
    P. Liu, Z. Li, W. Cai, M. Fangc, X. Luo, RSC Adv. 1, 847–851 (2011)CrossRefGoogle Scholar
  48. 48.
    P. Babelon, A.S. Dequiedt, H. Mostéfa-Sba, S. Bourgeois, P. Sibillot, M. Sacilotti, Thin Solid Films 322, 63–67 (1998)CrossRefGoogle Scholar
  49. 49.
    S. Poulston, P.M. Parlett, P. Stone, M. Bowker, Surf. Interface Anal. 24, 811–820 (1996)CrossRefGoogle Scholar
  50. 50.
    P. Steiner, V. Kinsinger, I. Sander, B. Siegwart, S. Hiifner, C. Politis, R. Hoppe, H.P. Miiller, Z. Phys. B 67, 497–502 (1987)CrossRefGoogle Scholar
  51. 51.
    Y.Q. Wang, C.M. Yang, B. Zibrowius, B. Spliethoff, M. Lindén, F. Schuth, Chem. Mater. 15, 5029–5035 (2003)CrossRefGoogle Scholar
  52. 52.
    X. Wang, K.S.K. Lin, J.C.C. Chan, S. Cheng, J. Phys. Chem. B 109, 1763–1769 (2005)CrossRefPubMedGoogle Scholar
  53. 53.
    A.M. Liu, K. Hidajat, S. Kawiand, D.Y. Zhao, Chem. Commun. 0, 1145–1146 (2000)CrossRefGoogle Scholar
  54. 54.
    Z. Luan, J.A. Fournier, J.B. Wooten, D.E. Miser, M.J. Chang, Stud. Surf. Sci. Catal. 156, 897–906 (2005)CrossRefGoogle Scholar
  55. 55.
    A. Steel, S.W. Carr, M.W. Anderson, Chem. Mater. 7, 1829–1832 (1995)CrossRefGoogle Scholar
  56. 56.
    L. Hu, S. Ji, Z. Jiang, H. Song, P. Wu, Q. Liu, J. Phys. Chem. C 111, 15173–15184 (2007)CrossRefGoogle Scholar
  57. 57.
    F. Berube, B. Nohair, F. Kleitz, S. Kaliaguine, Chem. Mater. 22, 1988–2000 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chandralayam Soumini
    • 1
    • 2
  • Sankaran Sugunan
    • 1
    Email author
  • Suja Haridas
    • 1
  1. 1.Department of Applied ChemistryCochin University of Science and TechnologyCochinIndia
  2. 2.Department of ChemistryM.E.S Ponnani College, PonnaniMalappuramIndia

Personalised recommendations