Journal of Porous Materials

, Volume 26, Issue 1, pp 261–269 | Cite as

Iron-doped mesoporous silica, Fe-MCM-41, as an active Lewis acid catalyst for acidolysis of benzyl chloride with fatty acid

  • Zhuxiu Zhang
  • Mengnan Hu
  • Qiumin Mei
  • Jihai TangEmail author
  • Zhaoyang Fei
  • Xian Chen
  • Qing Liu
  • Mifen CuiEmail author
  • Xu Qiao


Iron-doped mesoporous silica, Fe-MCM-41, with different concentrations of Lewis acidity have been prepared by the hydrothermal method. Physicochemical properties of all Fe-MCM-41 samples were obtained via HRTEM, PXRD and N2 sorption characterization. The surface acidities were tested by NH3-TPD. The catalytic activity of all Fe-MCM-41 materials were evaluated in the acidolysis reaction of benzyl chloride with various fatty acids. The corresponding benzaldehyde and acyl chloride product were synthesized in good conversion and high atom efficiency over the catalyst with the highest Fe content.


Fe-MCM-41 Lewis acid catalyst Acidolysis Coproduction 



The author gratefully acknowledges the financial support from National Key R&D Program of China (2017YFB0307304), National Natural Science Foundation of China (21676141, 21606130), Natural Science Foundation of Jiangsu Province (BK20170989), Natural Science Foundation of Jiangsu Higher Education Institutions of China (17KJB530005), Six Major Talent Peak Project of Jiangsu Province (XCL-017) and Project “333” of Jiangsu Province (BRA2016418).


  1. 1.
    A. Corma, H. García, Chem. Rev. 103, 4307–4366 (2003)CrossRefGoogle Scholar
  2. 2.
    D.W. Stephan, Acc. Chem. Res. 48, 306–316 (2015)CrossRefGoogle Scholar
  3. 3.
    P.Y. Dapsens, C. Mondelli, J. Perez-Ramirez, Chem. Soc. Rev. 44, 7025–7043 (2015)CrossRefGoogle Scholar
  4. 4.
    P.T. Anastas, M.M. Kirchhoff, Acc. Chem. Res. 35, 686–694 (2002)CrossRefGoogle Scholar
  5. 5.
    A.H. Chughtai, N. Ahmad, H.A. Younus, A. Laypkov, F. Verpoort, Chem. Soc. Rev. 44, 6804–6849 (2015)CrossRefGoogle Scholar
  6. 6.
    P. Ferrini, J. Dijkmans, R. De Clercq, S. Van de Vyver, M. Dusselier, P.A. Jacobs, B.F. Sels, Coord. Chem. Rev. 343, 220–255 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Sudhakar Reddy, R. Kumar, J. Catal. 130, 440–446 (1991)CrossRefGoogle Scholar
  8. 8.
    G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, Science 309, 2040–2042 (2005)CrossRefGoogle Scholar
  9. 9.
    C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier, D. Louer, G. Ferey, J. Am. Chem. Soc. 124, 13519–13526 (2002)CrossRefGoogle Scholar
  10. 10.
    J.C. Jiang, F. Gandara, Y.B. Zhang, K. Na, O.M. Yaghi, W.G. Klemperer, J. Am. Chem. Soc. 136, 12844–12847 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Kandiah, M.H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E.A. Quadrelli, F. Bonino, K.P. Lillerud, Chem. Mater. 22, 6632–6640 (2010)CrossRefGoogle Scholar
  12. 12.
    H. Zhou, Y.M. Wang, W.Z. Zhang, J.P. Qu, X.B. Lu, Green Chem. 13, 644–650 (2011)CrossRefGoogle Scholar
  13. 13.
    P. Devi, U. Das, A.K. Dalai, Chem. Eng. J. 346, 477–488 (2018)CrossRefGoogle Scholar
  14. 14.
    K. Soni, B.S. Rana, A.K. Sinha, A. Bhaumik, M. Nandi, M. Kumar, G.M. Dhar, Appl. Catal. B 90, 55–63 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Xia, M.C. Long, Y.D. Yang, C. Chen, W.M. Cai, B.X. Zhou, Appl. Catal. B 110, 118–125 (2011)CrossRefGoogle Scholar
  16. 16.
    X.B. Ma, H.W. Chi, H.R. Yue, Y.J. Zhao, Y. Xu, J. Lv, S.P. Wang, J.L. Gong, AIChE J. 59, 2530–2539 (2013)CrossRefGoogle Scholar
  17. 17.
    B.Y. Lan, R.H. Huang, L.S. Li, H.H. Yan, G.Z. Liao, X. Wang, Q.Y. Zhang, Chem. Eng. J. 219, 346–354 (2013)CrossRefGoogle Scholar
  18. 18.
    A.I. Carrillo, E. Serrano, J.C. Serrano-Ruiz, R. Luque, J. Garcia-Martinez, Appl. Catal. A 435, 1–9 (2012)CrossRefGoogle Scholar
  19. 19.
    X. Chu, D. Zhou, D. Li, K. Xia, N. Gan, X.H. Lu, R.F. Nie, Q.H. Xia, Microporous Mesoporous Mater. 230, 166–176 (2016)CrossRefGoogle Scholar
  20. 20.
    E.G. Vaschetto, G.A. Monti, E.R. Herrero, S.G. Casuscelli, G.A. Eimer, Appl. Catal. A 453, 391–402 (2013)CrossRefGoogle Scholar
  21. 21.
    Y.Q. Jiang, K.F. Lin, Y.N. Zhang, J. Liu, G.H. Li, J.M. Sun, X.Z. Xu, Appl. Catal. A 445, 172–179 (2012)CrossRefGoogle Scholar
  22. 22.
    W. Xu, T. Ollevier, F. Kleitz, ACS Catal. 8, 1932–1944 (2018)CrossRefGoogle Scholar
  23. 23.
    C. Ruppin, P. Corbiere, EU Patent EP926125A1, 1999Google Scholar
  24. 24.
    S.K. Badamali, P. Selvam, Catal. Today 141, 103–108 (2009)CrossRefGoogle Scholar
  25. 25.
    Y. Wang, Q.H. Zhang, T. Shishido, K. Takehira, J. Catal. 209, 186–196 (2002)CrossRefGoogle Scholar
  26. 26.
    T.K. Das, K. Chaudhari, A.J. Chandwadkar, S. Sivasanker, J. Chem. Soc. Chem. Commun. 24, 2495–2496 (1995)CrossRefGoogle Scholar
  27. 27.
    V.R. Choudhary, K. Mantri, Langmuir 16, 8024–8030 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhuxiu Zhang
    • 1
  • Mengnan Hu
    • 1
  • Qiumin Mei
    • 1
  • Jihai Tang
    • 1
    • 2
    Email author
  • Zhaoyang Fei
    • 1
  • Xian Chen
    • 1
  • Qing Liu
    • 1
  • Mifen Cui
    • 1
    Email author
  • Xu Qiao
    • 1
    • 2
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM)Nanjing Tech UniversityNanjingChina

Personalised recommendations