Skip to main content
Log in

Study on coordination structure of Re adsorbed on Mg–Al layered double hydroxide using X-ray absorption fine structure

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Porous materials of hydrotalcite-like layered double hydroxides (LDHs) have been used for removal of anionic contaminants from solution. However, local coordination structures of anions adsorbed on LDHs are not fully understood because of the lack of spectroscopic studies. In this study, we utilized X-ray absorption fine structure spectroscopy to clarify the coordination structure of Re in Mg–Al LDH as a surrogate of Tc. Adsorption experiments of ReO4 on calcined and uncalcined Mg–Al LDHs were conducted in aqueous solutions with different concentrations of NaCl, NaNO3, and Na2SO4. The tested calcined and uncalcined Mg–Al LDHs were characterized by chemical composition analysis, scanning electron microscopy (SEM), and BET surface area. Calcined Mg–Al LDH showed much higher adsorption than uncalcined one. The adsorption of ReO4 was reversible, and decreased with increasing concentration of competing anions like Cl, NO3, or SO42−. Rhenium LIII-edge X-ray absorption near edge structure suggested that neither redox reaction nor change of coordination structure occurred during intercalation of Re into Mg–Al LDH. Analysis of Re LIII-edge extended X-ray absorption fine structure indicated that ReO4 was adsorbed as an outer-sphere complex on Mg–Al LDH. The observed Re adsorption–desorption behavior, which was sensitive to the presence of competing anions, was consistent with the formation of outer sphere-complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Miyata, Clays Clay Miner. 31, 305 (1983)

    Article  CAS  Google Scholar 

  2. M.J. Kang, S.W. Rhee, H. Moon, V. Neck, T. Fanghӓnel, Radiochim. Acta 75, 169 (1996)

    Article  CAS  Google Scholar 

  3. R.L. Goswamee, P. Sengupta, K.G. Bhattacharyya, D.K. Dutta, Appl. Clay Sci. 13, 21 (1998)

    Article  CAS  Google Scholar 

  4. T. Kameda, Y. Miyano, T. Yoshioka, M. Uchida, A. Okuwaki, Chem. Lett. 29, 1136 (2000)

    Article  Google Scholar 

  5. N. Kozai, T. Ohnuki, S. Komarneni, J. Mater. Res. 17, 2993 (2002)

    Article  CAS  Google Scholar 

  6. K.H. Goh, T.T. Lim, Z. Dong, Water Res. 42, 1343 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. M. Jobbágy, A.E. Regazzoni, J. Colloid Interface Sci. 393, 314 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. N.A. Wall, Y. Minai, J. Radioanal. Nucl. Chem. 301, 221 (2014)

    Article  CAS  Google Scholar 

  9. K.H. Lieser, Radiochim. Acta 63, 5 (1993)

    Article  CAS  Google Scholar 

  10. H. Hu, B. Jiang, H. Wu, J. Zhang, X. Chen, J. Environ. Radioact. 165, 39 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. S. Sarri, P. Misaelides, D. Zamboulis, X. Gaona, M. Altmaier, J. Radioanal. Nucl. Chem. 307, 681 (2016)

    Article  CAS  Google Scholar 

  12. Y. Yamashita, Y. Takahashi, H. Haba, S. Enomoto, H. Shimizu, Geochim. Cosmochim. Acta 71, 3458 (2007)

    Article  CAS  Google Scholar 

  13. B.C. Vicente, R.C. Nelson, A.W. Moses, S. Chattopadhyay, S.L. Scott, J. Phys. Chem. C 115, 9012 (2011)

    Article  CAS  Google Scholar 

  14. J.K. Choe, M.I. Boyanov, J. Liu, K.M. Kemner, C.J. Werth, T.J. Strathmann, J. Phys. Chem. C 118, 11666 (2014)

    Article  CAS  Google Scholar 

  15. K. Tanaka, N. Watanabe, PLoS ONE 10(5), e0127417 (2015). https://doi.org/10.1371/journal.pone.0127417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. K. Tanaka, M. Tanaka, N. Watanabe, K. Tokunaga, Y. Takahashi, Chem. Geol. 460, 130 (2017)

    Article  CAS  Google Scholar 

  17. S.I. Zavinsky, J.J. Rehr, A. Ankudinov, R.C. Albers, M.J. Eller, Phys. Rev. B52, 2995 (1995)

    Article  Google Scholar 

  18. G. Fetter, F. Hernández, A.M. Maubert, V.H. Lara, P. Bosch, J. Porous Mater 4, 27 (1997)

    Article  CAS  Google Scholar 

  19. S. Miyata, Clays Clay Miner. 28, 50 (1980)

    Article  CAS  Google Scholar 

  20. Y. Xi, R.J. Davis, J. Catal. 268, 307 (2009)

    Article  CAS  Google Scholar 

  21. T. Sato, S. Onai, T. Yoshioka, A. Okuwaki, J. Chem. Tech. Biotechnol. 57, 137 (1993)

    Article  CAS  Google Scholar 

  22. L.M. Parker, N.B. Milestone, R.H. Newman, Ind. Eng. Chem. Res. 34, 1196 (1995)

    Article  CAS  Google Scholar 

  23. Y. You, G.F. Vance, H. Zhao, Appl. Clay Sci. 20, 13 (2001)

    Article  CAS  Google Scholar 

  24. B. Krebs, K.-D. Hasse, Acta Crystallogr. Sect. B 32, 1334 (1976)

    Article  Google Scholar 

  25. G.J. Kruger, E.C. Reynhardt, Acta Crystallogr. Sect. B 34, 259 (1978)

    Article  Google Scholar 

  26. P.A. O’Day, J.J. Rehr, S.I. Zabinsky, G.E. Brown, J. Am. Chem. Soc. 116, 2938 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

XAFS measurement was performed with the approval of the Photon Factory, KEK (Proposal No. 2015G113 and 2015G701). This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Tanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, K., Kozai, N., Ohnuki, T. et al. Study on coordination structure of Re adsorbed on Mg–Al layered double hydroxide using X-ray absorption fine structure. J Porous Mater 26, 505–511 (2019). https://doi.org/10.1007/s10934-018-0634-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0634-z

Keywords

Navigation