Advertisement

Enhanced cracking of bulky hydrocarbons over hierarchical ZSM-5 materials: a comparative study

  • Xuan Hoan Vu
  • Thanh Tam Truong
  • Udo Armbruster
Article
  • 72 Downloads

Abstract

A comparative study of hierarchical ZSM-5 materials including nanosized ZSM-5 (Nano-ZSM-5), nanosized ZSM-5/SBA-15 composite (Com-ZSM-5) and mesoporous ZSM-5 (Meso-ZSM-5) for the enhanced cracking of bulky hydrocarbons is reported. The studied materials were thoroughly characterized by XRD, SEM, TEM, N2-sorption, AAS, ICP-AES, NH3-TPD, FTIR of adsorbed pyridine before being tested in the cracking of 1,3,5 tri-isopropyl-benzene (TIPB) as a representative of bulky hydrocarbons. It was found that all synthesized hierarchical ZSM-5 materials exhibit the preservation of intrinsic, strong Brønsted acidity of ZSM-5 along with the enlarged external/mesoporous surface. The catalytic test results show that these hierarchical ZSM-5 materials indeed promote successive cracking reactions, leading to the enhanced TIPB conversion and selectivity to the deep cracking products, i.e. cumene and benzene compared to those of bulk, commercial ZSM-5. However, the development of mesoporosity by reducing the crystal size of ZSM-5 appears limited (Smeso = 134 m2 g−1). As a result, Nano-ZSM-5 affords only the moderate TIPB conversion and selectivity to deep cracking products (ca. 70% and ca. 20% respectively). Remarkably, the introduction of either intercrystalline mesopores by dispersion of Nano-ZSM-5 in the mesoporous SBA-15 analog matrix (Com-ZSM-5) or intracrystalline mesopores by the alkaline-acid treatments (Meso-ZSM-5) significantly improves the external/mesoporous surface (Smeso = 233–297 m2 g−1), giving rise to both the high TIPB conversion and selectivity to the deep cracking products (ca. 90% and ca. 25% respectively).

Keywords

Zeolite ZSM-5 SBA-15 Acidity Cracking 

Notes

Acknowledgements

The authors would like to thank Dr. M.-M. Pohl for recording TEM images; R. Kraehnert for SEM measurements; Dr. U. Bentrup for IR of adsorbed pyridine studies; Mr. R. Eckelt for N2-adsorption and desorption measurements; Dr. A. Martin is acknowledged for his valuable advice on the experimental design and result discussion. H. X. Vu thanks Ton Duc Thang University and Leibniz-Institut für Katalyse for financial support.

References

  1. 1.
    E.T.C. Vogt, B.M. Weckhuysen, Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    N.V. Choudary, B.L. Newalkar, Use of zeolites in petroleum refining and petrochemical processes: recent advances. J Porous Mater. 18, 685–692 (2011)CrossRefGoogle Scholar
  3. 3.
    J. Pérez-Ramírez, C.H. Christensen, K. Egeblad, C.H. Christensen, J.C. Groen, Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 37, 2530–2542 (2008)CrossRefPubMedGoogle Scholar
  4. 4.
    K. Möller, T. Bein, Mesoporosity: a new dimension for zeolites. Chem. Soc. Rev. 42, 3689–3707 (2013)CrossRefPubMedGoogle Scholar
  5. 5.
    V. Valtchev, L. Tosheva, Porous nanosized particles: preparation, properties, and applications. Chem. Rev. 8, 6734–6760 (2013)CrossRefGoogle Scholar
  6. 6.
    J. Čejka, S. Mintova, Perspectives of micro/mesoporous composites in catalysis. Catal. Rev. Sci. Eng. 49, 457–509 (2007)CrossRefGoogle Scholar
  7. 7.
    W. Schwieger, A.G. Machoke, T. Weissenberger, A. Inayat, T. Selvam, M. Klumpp, A. Inayat, Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev. 45, 3353–3376 (2016)CrossRefPubMedGoogle Scholar
  8. 8.
    X.H. Vu, U. Armbruster, A. Martin, Micro/mesoporous zeolitic composites: recent developments in synthesis and catalytic applications. Catalysts 6, 183 (2016)CrossRefGoogle Scholar
  9. 9.
    D. Verboekend, J. Pérez-Ramírez, Design of hierarchical zeolite catalysts by desilication. Catal. Sci. Technol. 1, 879–890 (2011)CrossRefGoogle Scholar
  10. 10.
    P. Morales-Pacheco, J.M. Domínguez, L. Bucio, F. Alvarez, U. Sedran, M. Falco, Synthesis of FAU(Y)- and MFI(ZSM5)-nanosized crystallites for catalytic cracking of 1,3,5-triisopropylbenzene. Catal. Today 166, 25–38 (2011)CrossRefGoogle Scholar
  11. 11.
    H. Awala, J.P. Gilson, R. Retoux, P. Boullay, J.M. Goupil, V. Valtchev, S. Mintova, Template-free nanosized faujasite-type zeolites. Nat. Mater. 14, 447–451 (2015)CrossRefPubMedGoogle Scholar
  12. 12.
    Y. Ni, A. Sun, X. Wu, G. Hai, J. Hu, T. Li, G. Li, Facile synthesis of hierarchical nanocrystalline ZSM-5 zeolite under mild conditions and its catalytic performance. J. Colloid Interface Sci. 361, 521–526 (2011)CrossRefPubMedGoogle Scholar
  13. 13.
    A. Petushkov, S. Yoon, S.C. Larsen, Synthesis of hierarchical nanocrystalline ZSM-5 with controlled particle size and mesoporosity. Micropor. Mesopor. Mater. 137, 92–100 (2011)CrossRefGoogle Scholar
  14. 14.
    X.H. Vu, U. Bentrup, M. Hunger, R. Kraehnert, U. Armbruster, A. Martin, Direct synthesis of nanosized-ZSM-5/SBA-15 analog composites from preformed ZSM-5 precursors for improved catalytic performance as cracking catalyst. J. Mater. Sci. 49, 5676–5689 (2014)CrossRefGoogle Scholar
  15. 15.
    X.H. Vu, M. Hunger, U. Armbruster, A. Martin, Influence of initial Si/Al ratios on the structural, acidic and catalytic properties of nanosized-ZSM-5/SBA-15 analog composites prepared from ZSM-5 precursors. J porous Mater. (2017).  https://doi.org/10.1007/s10934-017-0514-y CrossRefGoogle Scholar
  16. 16.
    M.S. Aghakhani, A.A. Khodadadi, Sh Najafi, Y. Mortazavi, Enhanced triisopropylbenzene cracking and suppressed coking on tailored composite of Y-zeolite/amorphous silica–alumina catalyst. J. Ind. Eng. Chem. 20, 3037–3045 (2014)CrossRefGoogle Scholar
  17. 17.
    A. Ishihara, K. Kimura, A. Owaki, K. Inui, T. Hashimoto, H. Nasu, Catalytic cracking of VGO by hierarchical ZSM-5 zeolite containing mesoporous silica–aluminas using a Curie point pyrolyzer. Catal. Commun. 28, 163–167 (2012)CrossRefGoogle Scholar
  18. 18.
    K.A. Tarach, K. Góra-Marek, J. Martinez-Triguero, I. Melián-Cabrera, Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes. Catal. Sci. Technol. 7, 858–873 (2017)CrossRefGoogle Scholar
  19. 19.
    M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, M. Nomura, E. Kikuchi, M. Matsukata, Alkali-treatment technique: new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl. Catal. A 219, 33–43 (2001)CrossRefGoogle Scholar
  20. 20.
    X.H. Vu, T.T. Truong, U. Armbruster, A. Martin, Influence of post-synthetic treatments of aluminum-rich ZSM-5 on the catalytic cracking of bulky hydrocarbons at low temperature. Reac Kinet Mech Cat (2017).  https://doi.org/10.1007/s11144-017-1317-5 CrossRefGoogle Scholar
  21. 21.
    G. Gil, L. Mokrzycki, B. Sulikowski, Z. Olejniczak, S. Walas, Desilication of ZSM-5 and ZSM-12 zeolites: impact on textural, acidic and catalytic properties. Catal. Today 152, 24–32 (2010)CrossRefGoogle Scholar
  22. 22.
    C. Li, Y. Wang, Y. Guo, X. Liu, Y. Guo, Z. Zhang, Y. Wang, G. Lu, Synthesis of highly ordered, extremely hydrothermal stable SBA-15/Al-SBA-15 under the assistance of sodium chloride. Chem. Mater. 19, 173–178 (2006)CrossRefGoogle Scholar
  23. 23.
    P. Losch, T.C. Hoff, J.F. Kolb, C. Bernardon, J.P. Tessonnier, B. Louis, Mesoporous ZSM-5 zeolites in acid catalysis: top-down vs. bottom-up approach. Catalysts 7, 225 (2017)CrossRefGoogle Scholar
  24. 24.
    C. Moterra, G. Magnacca, V. Bolis, On the critical use of molar absorption coefficients for adsorbed species: the methanol/silica system. Catal. Today 70, 43–58 (2001)CrossRefGoogle Scholar
  25. 25.
    S. Al-Khattaf, H. de Lasa, The role of diffusion in alkyl-benzenes catalytic cracking. Appl. Catal. A 226, 139–153 (2002)CrossRefGoogle Scholar
  26. 26.
    S. Al-Khattaf, J.A. Atias, K. Jarosch, H. de Lasa, Diffusion and catalytic cracking of 1,3,5 triisopropylbenzene in FCC catalysts. Chem. Eng. Sci. 57, 4909–4920 (2002)CrossRefGoogle Scholar
  27. 27.
    L. Zhao, B. Shen, J. Gao, C. Xu, Investigation on the mechanism of diffusion in mesopore structured ZSM-5 and improved heavy oil conversion. J. Catal. 258, 228–234 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xuan Hoan Vu
    • 1
    • 2
  • Thanh Tam Truong
    • 3
  • Udo Armbruster
    • 4
  1. 1.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Department of Chemical Engineering, Faculty of ChemistryQuy Nhon UniversityQuy Nhon CityVietnam
  4. 4.Leibniz-Institut für Katalyse e.V. an der Universität RostockRostockGermany

Personalised recommendations