The use of covalent organic frameworks as template for conductive polymer synthesis and their sensor applications

  • Nurettin Sahiner
  • Sahin Demirci


In this study, the synthesis of a mesoporous crystalline covalent organic framework (COF) based on melamine and 1,4-dibromo butane as COF-1,4 and its use as a template for in situ synthesis of conductive polymers such as poly(Aniline) (PANi) and poly(Pyrrole) (PPy) within the pores were reported. The synthesized COF-1,4/conductive polymer semi-Interpenetrating Network (semi-IPN) composites were characterized via FT-IR spectroscopy and thermogravimetric analyzer (TGA), and the conductivities of the prepared composites were determined with an electrometer. It was found that upon the in situ synthesis of the conductive polymers such as PANi and PPy within COF-1,4, the conductivity of bare COF-1,4 was increased 3 million-fold for COF-1,4/PANi, and 500 thousand-fold for COF-1,4/PPy, respectively. Furthermore, the potential sensor applications of these COF-1,4/conductive polymer semi-IPN composites were investigated against HCl and NH3, and methyl orange (MO), and methylene blue (MB) dyes in aqueous solutions. The sensor studies revealed that the conductivity of bare COF-1,4 increased 20 and 7K-folds upon 15 min exposure to HCl and NH3 gases, respectively. Interestingly, an eightfold decrease in the conductivity of COF-1,4/PANi was observed upon 15 min exposure to NH3 gas vapor at ambient conditions. Also, the conductivities of prepared COF-1,4 and its conductive polymer composites changed after treatment with MO and MB dyes suggesting other potential sensor applications of these porous materials.


Covalent-organic frameworks Conductive polymers COF/conductive polymer composite Polyaniline/polypyrrole HCl/NH3 gas sensor Organic dye sensor 


  1. 1.
    A.I. Cooper, Adv. Mater. 21, 1291–1295 (2009)CrossRefGoogle Scholar
  2. 2.
    N.B. McKeown, P.M. Budd, Chem. Soc. Rev. 35, 675–683 (2006)CrossRefPubMedGoogle Scholar
  3. 3.
    C.D. Wood, B. Tan, A. Trewin, H.J. Niu, D. Bradshaw, M.J. Rosseinsky, Y.Z. Khimyak, N.L. Campbell, R. Kirk, E. Stockel, A.I. Cooper, Chem. Mater. 19, 2034–2048 (2007)CrossRefGoogle Scholar
  4. 4.
    M. O’Keeffe, O.M. Yaghi, Chem. Soc. Rev. 38, 1215–1217 (2009)CrossRefPubMedGoogle Scholar
  5. 5.
    H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Corte’s, R.E. Taylor, M. O’Keeffe, O.M. Yaghi, Science 316, 268–272 (2007)CrossRefPubMedGoogle Scholar
  6. 6.
    A.P. Cote, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger, O.M. Yaghi, Science 310, 1166–1170 (2005)CrossRefPubMedGoogle Scholar
  7. 7.
    J.W. Colson, W.R. Dichtel, Nat. Chem. 5, 453–465 (2013)CrossRefPubMedGoogle Scholar
  8. 8.
    P.J. Waller, F. Gandara, O.M. Yaghi, Acc. Chem. Res. 48, 3053–3063 (2015)CrossRefPubMedGoogle Scholar
  9. 9.
    P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 47, 3450–3453 (2008)CrossRefGoogle Scholar
  10. 10.
    G. Das, D.B. Shinde, S. Kandambeth, B.P. Biswal, R. Banerjee, Chem. Commun. 50, 12615–12618 (2014)CrossRefGoogle Scholar
  11. 11.
    S.T. Yang, J. Kim, H.Y. Cho, S. Kim, W.S. Ahm, RSC Adv. 2, 10179–10181 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Dogru, A. Sonnauer, S. Zimdars, M. Doblinger, P. Knochel, T. Bein, Cryst. Eng. Commun. 15, 1500–1502 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Peng, W.K. Wong, Z. Hu, Y. Cheng, D. Yuan, S.A. Khan, D. Zhao, Chem. Mater. 28, 5095–5101 (2016)CrossRefGoogle Scholar
  14. 14.
    X. Feng, X. Ding, C. Jiang, Chem. Soc. Rev. 41, 6010–6022 (2012)CrossRefPubMedGoogle Scholar
  15. 15.
    G.V.H. Bertrand, V.K. Michaelis, T.C. Ong, R.G. Griffin, M. Dinca, Proc. Natl. Acad. Sci. USA 110, 4923–4928, (2013)CrossRefPubMedGoogle Scholar
  16. 16.
    Y.B. Zhang, J. Su, H. Furukawa, Y. Yun, H. Gandara, A. Duong, X. Zhou, O.M. Yaghi, J. Am. Chem. Soc. 135, 16336–16339 (2013)CrossRefPubMedGoogle Scholar
  17. 17.
    C.J. Doonan, D.J. Tranchemontage, T.G. Glover, J.R. Hunt, O.M. Yaghi, Nat. Chem. 2, 235–238 (2010)CrossRefPubMedGoogle Scholar
  18. 18.
    C.R. DeBlase, K.E. Silberstein, T.R. Truong, H.D. Abruna, W.R. Dichtel, J. Am. Chem. Soc. 135, 16821–16824 (2013)CrossRefPubMedGoogle Scholar
  19. 19.
    L. Stegbauer, K. Schwinghammer, B.V. Lotsch, Chem. Sci. 5, 2789–2793 (2014)CrossRefGoogle Scholar
  20. 20.
    G. Das, B.P. Biswal, S. Kandanbeth, V. Venkatesh, G. Kaur, M. Addicoat, T. Heine, S. Verma, R. Banerjee, Chem. Sci. 6, 3931–3939 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    P. Jothimutu, J.L. Hsu, R. Chen, M. Inayathullah, V.R. Pothineni, A. Jan, G.C. Gurtner, J. Rajadas, M.R. Nicolls, ChemNanoMat 2, 904–910 (2016)CrossRefGoogle Scholar
  22. 22.
    G.A. Evtugyn, V.B. Stepanova, A.V. Porfireva, A.I. Zamaleeva, R. Rawil, J. Nanosci. Nanotechnol. 14, 6738–6747 (2014)CrossRefPubMedGoogle Scholar
  23. 23.
    R. Athavale, C. Dinkel, B. Wehrli, E. Bakker, G.A. Crespo, A. Brand, Environ. Sci. Technol. Lett. 4, 286–291 (2017)CrossRefGoogle Scholar
  24. 24.
    J. Raczkowska, Y. Stetsyshyn, K. Awsiuk, J. Zemla, A. Kostruba, K. Harhay, M. Marzec, A. Bernasik, O. Lishchynskyi, H. Ohar, A. Budkowski, RSC Adv. 6, 87469–87477 (2016)CrossRefGoogle Scholar
  25. 25.
    H. Wang, J. Mei, P. Liu, K. Schmidit, G. Jimenez-Oses, S. Osuna, L. Fang, C.J. Tassone, A.P. Zoombelt, A.N. Sokolov, K.N. Houk, M.F. Toney, Z. Bao, ACS Nano 7, 2659–2668 (2013)CrossRefPubMedGoogle Scholar
  26. 26.
    Y.H. Kim, J. Lee, S. Hofmann, M.C. Gather, L. Muller-Meskamp, K. Leo, Adv. Funct. Mater. 23, 3763–3769 (2013)CrossRefGoogle Scholar
  27. 27.
    N.G. Jadhay, V.J. Gelling, D. Sazou, J. Coat. Technol. Res. 11, 473–494 (2014)CrossRefGoogle Scholar
  28. 28.
    T.K. Gupta, B.P. Singh, R.B. Mathur, S.R. Dhakate, Nanoscale 6, 842–851 (2014)CrossRefPubMedGoogle Scholar
  29. 29.
    L. Dou, Y. Liu, Z. Hong, G. Li, Y. Yang, Chem. Rev. 115, 12633–12665 (2015)CrossRefPubMedGoogle Scholar
  30. 30.
    I. Shown, A. Ganguly, L.-C. Chen, H.-H. Chen, Energy Sci. Eng. 3, 2–26 (2015)CrossRefGoogle Scholar
  31. 31.
    D. Saikia, Y.-C. Pan, C.-G. Wu, J. Fang, L.D. Tsai, H.-M. Kao, J. Mater. Chem. C 2, 331–343 (2014)CrossRefGoogle Scholar
  32. 32.
    Q. Shao, Z. Niu, M. Hirtz, L. Jiang, Y. Liu, Z. Wang, X. Chen, Small 10, 1466–1472 (2014)CrossRefPubMedGoogle Scholar
  33. 33.
    N. Sahiner, S. Demirci, Synth. Metal. 227, 11–20 (2017)CrossRefGoogle Scholar
  34. 34.
    N. Sahiner, S. Demirci, Mater. Des. 120, 47–55 (2017)CrossRefGoogle Scholar
  35. 35.
    P. Lamagni, B.L. Pedersen, A. Godiksen, S. Mossin, X.M. Hu, S.U. Pedersen, K. Daasberg, N. Lock, RSC Adv. 8, 13921–13932 (2018)CrossRefGoogle Scholar
  36. 36.
    Y. Wu, Z. Zhang, S. Bandow, K. Awaga, Bull. Chem. Soc. Jpn. 90, 1382–1387 (2017)CrossRefGoogle Scholar
  37. 37.
    H. Huang, X. Wang, Y. Sheng, C. Chen, X. Zou, Z. Shang, X. Lu, RSC Adv. 8, 8898–8909 (2018)CrossRefGoogle Scholar
  38. 38.
    N. Sahiner, S. Demirci, React. Funct. Polym. 105, 60–65 (2016)CrossRefGoogle Scholar
  39. 39.
    N. Sahiner, S. Demirci, J. Appl. Polym. Sci. 133, 44137 (2016)CrossRefGoogle Scholar
  40. 40.
    S.Y. Ding, W. Wang, Chem. Soc. Rev. 42, 548–568 (2013)CrossRefPubMedGoogle Scholar
  41. 41.
    N. Sahiner, S. Demirci, K. Sel, J. Porous Mater. (2016). CrossRefGoogle Scholar
  42. 42.
    N.E. Mircescu, M. Oltean, V. Chis, N. Leopold, Vib. Spectrosc. 62, 165–171 (2012)CrossRefGoogle Scholar
  43. 43.
    R.A. Vera, B.H. Romero, E. Ahumada, J. Chil. Chem. Soc. 48, 35–40 (2003)CrossRefGoogle Scholar
  44. 44.
    C. Xu, J. Sun, L. Gao, J. Mater. Chem. 21, 11253 (2011)CrossRefGoogle Scholar
  45. 45.
    H.S. Park, S.-J. Ko, J.Y. Kim, H.-K. Song, Sci. Rep. 3, 2454 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    N. Sahiner, S. Demirci, K. Sel, J. Electron. Mater. 45, 3759–3765 (2016)CrossRefGoogle Scholar
  47. 47.
    L. Wang, R.V. Kumar, Sens. Actuators B 98, 196–203 (2004)CrossRefGoogle Scholar
  48. 48.
    H. Jeon, J. Lee, M.H. Kim, J. Yoon, Macromol. Rapid Commun. 33, 972–976 (2012)CrossRefPubMedGoogle Scholar
  49. 49.
    J. Dominic, T. David, A. Vanaja, K.K.S. Kumar, Eur. Polym. J. 85, 236–243 (2016)CrossRefGoogle Scholar
  50. 50.
    J.G. Fernando, R.M. Vequizo, M.K.G. Odarve, B.R.B. Sambo, R.M. Malaluan, L.A.M. Malaluan, Phys. Status Solidi C 12, 576–579 (2015)CrossRefGoogle Scholar
  51. 51.
    H. Tai, Y. Jiang, G. Xie, J. Yu, M. Zhao, Int. J. Environ. Anal. Chem. 87, 539–551 (2007)CrossRefGoogle Scholar
  52. 52.
    M.A. Chougule, S.G. Pawar, S.L. Patil, B.T. Raut, P.R. Godse, S. Sen, V.B. Patil, IEEE Sens. J. 11, 2137–2141 (2011)CrossRefGoogle Scholar
  53. 53.
    A.L. Kukla, Y.M. Shirshov, S.A. Peletsky, Sens. Actuators B 37, 135–140 (1996)CrossRefGoogle Scholar
  54. 54.
    M. Matsuguchi, J. Io, G. Sugiyama, Y. Sakai, Synth. Met. 128, 15–19 (2002)CrossRefGoogle Scholar
  55. 55.
    A. Mittal, A. Malviya, D. Kaur, J. Mittal, L. Kurup, J. Hazard. Mater. 148, 229–240 (2007)CrossRefPubMedGoogle Scholar
  56. 56.
    L. Xia, H. Zhao, G. Liu, X. Hu, Y. Liu, J. Li, D. Yang, X. Wang, Colloid Surf. A 384, 358–362 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry & Nanoscience and Technology Research and Application Center (NANORAC), Faculty of Science & ArtsCanakkale Onsekiz Mart UniversityCanakkaleTurkey
  2. 2.Chemical & Biomolecular Engineering and Physics and Engineering PhysicsTulane UniversityNew OrleansUSA

Personalised recommendations