Mesoporous silica submicron particles (MCM-41) incorporating nanoscale Ag: synthesis, characterization and application as drug delivery coatings

  • E. Boccardi
  • L. Liverani
  • A. M. Beltrán
  • R. Günther
  • J. Schmidt
  • W. Peukert
  • A. R. Boccaccini


Mesoporous silica particles (MCM-41) decorated with Ag nanoparticles were prepared by the template ion exchange (TIE) method. The properties of the synthesized material were investigated by several techniques, including the nitrogen sorption measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR). Moreover, the degradability of the particles was tested in simulated body fluid (SBF) in order to evaluate the degradation rate of the material. The silica particles were loaded with different Ag concentrations but no structural changes were observed in the ordered mesoporosity. Already after 1 day of immersion in SBF most of the silver particles were released and partial degradation of the silica particles was observed. Ibuprofen was loaded into the Ag containing MCM-41 particles in order to evaluate their drug up-take/release capability. Silver and silicon ion release was quantified with inductively coupled plasma optical emission spectroscopy (ICP-OES). The novel silver doped MCM-41 particles were used as a functional coating on bioactive glass (BG) based scaffolds intended for bone tissue engineering application.


Silica Mesoporous particles Silver Drug delivery Scaffolds 



This manuscript is based on the doctoral thesis of E. Boccardi, University of Erlangen-Nuremberg, Germany. AMB thanks Talent-Hub Program funded by the Junta de Andalucía and the European Commission under the Co-funding of the 7th Framework Program in the People Program (Marie Curie Special Action). Authors also acknowledge the Laboratory for Nanoscopies and Spectroscopies (LANE) at the ICMS for the TEM facilities and for CG for BET measurements. LL acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 657264.


  1. 1.
    J.S. Beck, C.T.W. Chu, I.D. Johnson, C.T. Kresge, M.E. Leonwicz, W.J. Roth, U.S. Patent 50, 108 725 (1992)Google Scholar
  2. 2.
    D. Zhao, Y. Wan, W. Zhou, Ordered Mesoporous Materials. (Wiley, New York, 2013)CrossRefGoogle Scholar
  3. 3.
    M. Vallet-Regí, M. Manzano-García, M. Colilla, Biomedical Applications of Mesoporous Ceramics. (CRC Press, Boca Raton, 2012)CrossRefGoogle Scholar
  4. 4.
    M. Vallet-Regí, I. Izquierdo-Barba, M. Colilla, Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery. Philos. Trans. 370(1963), 1400–1421 (2012). CrossRefGoogle Scholar
  5. 5.
    M. Vallet-Regí, Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chemistry 12(23), 5934–5943 (2006). CrossRefGoogle Scholar
  6. 6.
    X. Yan, X. Huang, C. Yu et al., The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials 27(18), 3396–3403 (2006). CrossRefGoogle Scholar
  7. 7.
    M. Grün, K.K. Unger, A. Matsumoto, K. Tsutsumi, Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Microporous Mesoporous Mater. 27(2–3), 207–216 (1999). CrossRefGoogle Scholar
  8. 8.
    W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62–69 (1968). CrossRefGoogle Scholar
  9. 9.
    M. Iwamoto, Y. Tanaka, Preparation of metal ion-planted mesoporous silica by template ion-exchange method and its catalytic activity for asymmetric oxidation of sulfide. Catal. Surv. 5(1), 25–36 (2001). CrossRefGoogle Scholar
  10. 10.
    M. Vallet-Regi, A. Rámila, R.P. del Real, J. Pérez-Pariente, A new property of MCM-41: drug delivery system. Chem. Mater. 13(2), 308–311 (2001). CrossRefGoogle Scholar
  11. 11.
    C. Wu, J. Chang, Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J. Control. Release 2014:1–14
  12. 12.
    R. Mortera, B. Onida, S. Fiorilli et al., Synthesis and characterization of MCM-41 spheres inside bioactive glass–ceramic scaffold. Chem. Eng. J. 137(1), 54–61 (2008). CrossRefGoogle Scholar
  13. 13.
    E. Boccardi, A. Philippart, J.A. Juhasz-Bortuzzo et al., Uniform surface modification of 3D bioglass®-based scaffolds with mesoporous silica particles (MCM-41) for enhancing drug delivery capability. Front. Bioeng. Biotechnol. 3, 177 (2015). CrossRefGoogle Scholar
  14. 14.
    E. Boccardi, Natural Marine Derived Bioactive Glass Based Scaffolds with Improved Functionalities (Dissertation, University of Erlangen-Nuremberg, 2016)Google Scholar
  15. 15.
    K. Misch, H.-L. Wang, Implant surgery complications: etiology and treatment. Implant Dent. 17(2), 159–168 (2008). CrossRefGoogle Scholar
  16. 16.
    D. Kozon, K. Zheng, E. Boccardi, Y. Liu, L. Liverani, A. Boccaccini, Synthesis of monodispersed Ag-doped bioactive glass nanoparticles via surface modification. Materials 9(4), 225 (2016). CrossRefGoogle Scholar
  17. 17.
    J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4(3), 707–716 (2008). CrossRefGoogle Scholar
  18. 18.
    R.E. Hall, G. Bender, R.E. Marquis, Inhibitory and cidal antimicrobial actions of electrically generated silver ions. J. Oral Maxillofac. Surg. 45(9), 779–784 (1987). CrossRefGoogle Scholar
  19. 19.
    B. Fan, W. Fan, D. Wu, F. Tay, T. Ma, Y. Wu, Effects of adsorbed and templated nanosilver in mesoporous calcium-silicate nanoparticles on inhibition of bacteria colonization of dentin. Int. J. Nanomed 9, 5217 (2014). CrossRefGoogle Scholar
  20. 20.
    W. Gac, A. Derylo-Marczewska, S. Pasieczna-Patkowska, N. Popivnyak, G. Zukocinski, The influence of the preparation methods and pretreatment conditions on the properties of Ag-MCM-41 catalysts. J. Mol. Catal. 268(1–2), 15–23 (2007). CrossRefGoogle Scholar
  21. 21.
    T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15), (2006). 2907–2915CrossRefGoogle Scholar
  22. 22.
    M. Cerruti, D. Greenspan, K. Powers, Effect of pH and ionic strength on the reactivity of Bioglass® 45S5. Biomaterials 26(14), 1665–1674 (2005). CrossRefGoogle Scholar
  23. 23.
    A.L.B. Maçon, T.B. Kim, E.M. Valliant et al., A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J. Mater. Sci. Mater. Med. 26(2), 115 (2015). CrossRefGoogle Scholar
  24. 24.
    L.L. Hench, The story of Bioglass. J. Mater. Sci. Mater. Med. 17(11), 967–978 (2006). CrossRefGoogle Scholar
  25. 25.
    Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 27(11), 2414–2425 (2006). CrossRefGoogle Scholar
  26. 26.
    E. Boccardi, A. Philippart, J.A. Juhasz-Bortuzzo, G. Novajra, C. Vitale-Brovarone, A.R. Boccaccini, Characterisation of Bioglass based foams developed via replication of natural marine sponges. Adv. Appl. Ceram. 114, S56–S62 (2015). CrossRefGoogle Scholar
  27. 27.
    O. Peitl, E. Dutra Zanotto, L.L. Hench, Highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics. J. Non. Cryst. Solids 292(1–3), 115–126 (2001). CrossRefGoogle Scholar
  28. 28.
    Á Szegedi, M. Popova, K. Yoncheva, J. Makk, J. Mihály, P. Shestakova, Silver- and sulfadiazine-loaded nanostructured silica materials as potential replacement of silver sulfadiazine. J. Mater. Chem. 2(37), 6283 (2014). CrossRefGoogle Scholar
  29. 29.
    I.D. Xynos, M.V.J. Hukkanen, J.J. Batten, L.D. Buttery, L.L. Hench, J.M. Polak, Bioglass ®45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif. Tissue Int. 67(4), 321–329 (2000). CrossRefGoogle Scholar
  30. 30.
    I.D. Xynos, A.J. Edgar, L.D.K. Buttery, L.L. Hench, J.M. Polak, Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem. Biophys. Res. Commun. 276(2), 461–465 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. Boccardi
    • 1
  • L. Liverani
    • 1
  • A. M. Beltrán
    • 2
  • R. Günther
    • 1
  • J. Schmidt
    • 3
  • W. Peukert
    • 3
  • A. R. Boccaccini
    • 1
  1. 1.Institute of Biomaterials, Department of Materials Science and EngineeringUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Departamento de Ing. y Ciencia de los Mat. y del Transporte, EPSUniversidad de SevillaSevilleSpain
  3. 3.Institute of Particle Technology, Department of Chemical and Biological EngineeringUniversity of Erlangen-NurembergNurembergGermany

Personalised recommendations