Hollow mesoporous silica materials with well-ordered cubic Ia3d mesostructured shell for toluene adsorption

  • Nanli Qiao
  • Chi He
  • Xin Zhang
  • Hongling Yang
  • Jie Cheng
  • Zhengping Hao
Article
  • 3 Downloads

Abstract

In this work, hollow mesoporous silica samples (HMSs) with uniform diameter (≈ 400 nm), high specific surface area (1138–1742 m2/g) and stable structure were successfully synthesized. The shell of synthesized HMSs displays the well-ordered cubic Ia3d mesostructure with uniform mesopores of ca. 2.7 nm, and the shell thickness is easily adjusted in range from 30 to 80 nm. More importantly, the potential applications of HMSs are further demonstrated for adsorption capacity, toluene as the model molecule. HMSs exhibit remarkably higher adsorption capacity, especially HMS-3. The saturated adsorption amount toward toluene of HMS-3 can reach as high as 5.93 mmol/g that is almost two times larger than that of MCM-48 (2.74 mmol/g). In addition, Henry constants and adsorption kinetics date on HMS-3 and MCM-48 for toluene were also evaluated in detail. By a contrastive analysis, the good sorption capacity of HMS-3 for toluene could be ascribed to the unique interior voids and strong adsorption energy with each other.

Keywords

Hollow structure Ordered mesoporous silica Toluene Absorbent 

Notes

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2016YFC0204203) and National Natural Science Foundation of China (Nos. 21337003, 21477148 and 21477149).

Supplementary material

10934_2018_611_MOESM1_ESM.docx (428 kb)
Supplementary material 1 (DOCX 427 KB)

References

  1. 1.
    J.J. Li, X.Y. Xu, Z. Jiang, Z.P. Hao, C. Hu, Nanoporous silica-supported nanometric palladium: synthesis, characterization, and catalytic deep oxidation of benzene. Environ. Sci. Technol. 39, 1319–1323 (2005)CrossRefGoogle Scholar
  2. 2.
    Y.L. Chen, D.Z. Li, X.C. Wang, L. Wu, X.X. Wang, X.Z. Fu, Promoting effects of H2 on photooxidation of volatile organic pollutants over Pt/TiO2. New J. Chem. 12, 1514–1519 (2005)CrossRefGoogle Scholar
  3. 3.
    J. Jian, Y. Xu, H.B. Huang, M. He, S.L. Liu, G.Y. Liu, R.J. Xie, Q.Y. Feng, Y.J. Shu, Y.J. Zhan, R.M. Fang, X.G. Ye, D.Y.C. Leung, Mesoporous TiO2 under VUV irradiation: enhanced photocatalytic oxidation for VOCs degradation at room temperature. Chem. Eng. J. 327, 490–499 (2017)CrossRefGoogle Scholar
  4. 4.
    A. Martínez de Yuso, M.T. Izquierdo, R. Valenciano, B. Rubio, Toluene and n-hexane adsorption and recovery behavior on activated carbons derived from almond shell wastes. Fuel Process. Technol. 110, 1–7 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Junkaew, C. Rungnim, M. Kunaseth, R. Arroyave, V. Promarak, N. Kungwan, S. Namuangruk, Metal cluster-deposited graphene as an adsorptive material for m-xylene. New J. Chem. 39, 9650–9658 (2015)CrossRefGoogle Scholar
  6. 6.
    W.P. Qin, W.X. Cao, H.L. Liu, Z. Li, Y.W. Li, Metal-organic framework MIL-101 doped with palladium for toluene adsorption and hydrogen storage. RSC Adv. 4, 2414–2420 (2014)CrossRefGoogle Scholar
  7. 7.
    J.W. Lee, J.W. Lee, W.G. Shim, S.H. Suh, H. Moon, Adsorption of chlorinated volatile organic compounds on MCM-48. J. Chem. Eng. Data 48, 381–387 (2003)CrossRefGoogle Scholar
  8. 8.
    L.J. Feng, Q. Chen, J.H. Zhu, D.P. Liu, Y.C. Zhao, B.H. Han, Adsorption performance and catalytic activity of porous conjugated polyporphyrins via carbazole-based oxidative coupling polymerization. Polym. Chem. 5, 3081–3088 (2014)CrossRefGoogle Scholar
  9. 9.
    C. Long, P. Liu, Y. Li, A. Li, Q. Zhang, Characterization of hydrophobic hypercrosslinked polymer as an adsorbent for removal of chlorinated volatile organic compounds. Environ. Sci. Technol. 45, 4506–4512 (2011)CrossRefGoogle Scholar
  10. 10.
    H. Zhao, J.H. Ma, Q.Q. Zhang, L.P. Liu, R.F. Li, Adsorption and diffusion of n-Heptane and toluene over mesoporous ZSM-5 zeolites. Ind. Eng. Chem. Res. 53, 13810–13819 (2014)CrossRefGoogle Scholar
  11. 11.
    X.L. Fang, X.J. Zhao, W.J. Fang, C. Chen, N.F. Zheng, Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery. Nanoscale 5, 2205–2218 (2013)CrossRefGoogle Scholar
  12. 12.
    N.C. Lai, C. Lin, P. Ku, L.L. Chang, K.W. Liao, W.T. Lin, C. Yang, Hollow mesoporous Ia3d silica nanospheres with singleunit-cell-thick shell: spontaneous formation and drug delivery application. Nano Res. 10, 1439–1448 (2014)CrossRefGoogle Scholar
  13. 13.
    Y.H. Li, N. Li, W. Pan, Z.Z. Yu, L.M. Yang, B. Tang, Hollow Mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Appl. Mater. Interfaces 9, 2123–2129 (2017)CrossRefGoogle Scholar
  14. 14.
    V. Rajendra, M.A. Brook, Controlled formation of macroporous or hollow silica particles in non-aqueous silicone dispersions. RSC Adv. 3, 22229–22238 (2013)CrossRefGoogle Scholar
  15. 15.
    Y.M. Guo, Q.L. Fang, H. Li, W.K. Shi, J. Zhang, J. Zhang, J. Feng, W.L. Jia, L. Yang, Hollow silica nanospheres coated with insoluble calcium salts for pH-responsive sustained release of anticancer drugs. Chem. Commun. 52, 10652–10655 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Lie, L.X. Chen, X. Li, C.C. Zhang, Y. Jiang, One-step synthesis of structure controlled vinyl functionalized hollow mesoporous silica nanospheres. New J. Chem. 39, 287–294 (2015)CrossRefGoogle Scholar
  17. 17.
    S.S. Cao, X. Jin, X.H. Yuan, W.W. Wu, J. Hu, W.C. Sheng, A facile method for the preparation of monodisperse hollow silica spheres with controlled shell thickness. J. Polym. Sci. Pol. Chem. 48, 1332–1338 (2010)CrossRefGoogle Scholar
  18. 18.
    S. Gurmen, B. Bbin, Production and characterization of the nanostructured hollow iron oxide spheres and nanoparticles by aerosol route. J. Alloys Compd. 492, 585–589 (2010)CrossRefGoogle Scholar
  19. 19.
    M.H. Wang, X.Q. Wang, Q. Yue, Y. Zhang, C. Wang, J. Chen, H.Q. Cai, H.L. Lu, A.A. Elzatahry, D.Y. Zhao, Y.H. Deng, Templated fabrication of core–shell magnetic mesoporous carbon microspheres in 3-dimensional ordered macroporous silicas. Chem. Mater. 26, 3316–3321 (2014)CrossRefGoogle Scholar
  20. 20.
    J.G. Yu, Y. Le, B. Cheng, Fabrication and CO2 adsorption performance of bimodal porous silica hollow spheres with amine-modified surfaces. RSC Adv. 2, 6784–6791 (2012)CrossRefGoogle Scholar
  21. 21.
    X.H. Zhang, Y.N. Li, C.B. Cao, Facile one-pot synthesis of mesoporous hierarchically structured silica/carbon nanomaterials. J. Mater. Chem. 22, 13918–13921 (2012)CrossRefGoogle Scholar
  22. 22.
    J.C. Song, F.F. Xue, Z.Y. Lu, Z.Y. Sun, Controllable synthesis of hollow mesoporous silica particles by a facile one-pot sol–gel method. Chem. Commun. 51, 10517–10520 (2015)CrossRefGoogle Scholar
  23. 23.
    W.L. Yang, B.S. Li, Facile fabrication of hollow silica nanospheres and their hierarchical self-assemblies as drug delivery carriers through a new single-micelle-template approach. J. Mater. Chem. B 1, 2525–2532 (2013)CrossRefGoogle Scholar
  24. 24.
    B. Tan, S.E. Rankin, Dual latex/surfactant templating of hollow spherical silica particles with ordered mesoporous shells. Langmuir 21, 8180–8187 (2005)CrossRefGoogle Scholar
  25. 25.
    W.R. Zhao, M.D. Lang, Y.S. Li, L. Li, J.L. Shi, Fabrication of uniform hollow mesoporous silica spheres and ellipsoids of tunable size through a facile hard-templating route. J. Mater. Chem. 19, 2778–2783 (2009)CrossRefGoogle Scholar
  26. 26.
    A. Khanal, Y. Inoue, M. Yada, K. Nakashima, Synthesis of silica hollow nanoparticles templated by polymeric micelle with core–shell–corona structure. J. Am. Chem. Soc. 129, 1534–1535 (2007)CrossRefGoogle Scholar
  27. 27.
    H. Blas, M. Save, P. Pasetto, C. Boissère, C. Sanchez, B. Charleux. Elaboration of monodisperse spherical hollow particles with ordered mesoporous silica shells via dual latex/surfactant templating: radial orientation of mesopore channels. Langmuir 24, 13132–13137 (2008)CrossRefGoogle Scholar
  28. 28.
    C. Petitto, A. Galarneau, M.F. Driole, B. Chiche, B. Alonso, F.D. Renzo, F. Fajula, Synthesis of discrete micrometer-sized spherical particles of MCM-48. Chem. Mater. 17, 2120–2130 (2005)CrossRefGoogle Scholar
  29. 29.
    J.B. Zhou, C. Tang, B. Cheng, J.G. Yu, M. Jaroniec, Rattle-type carbon-alumina core–shell spheres: synthesis and application for adsorption of organic dyes. ACS Appl. Mater. Interfaces 4, 2174–2179 (2012)CrossRefGoogle Scholar
  30. 30.
    S.G. Zhang, L. Xu, H.C. Liu, Y.F. Zhao, Y. Zhang, Q.Y. Wang, Z.X. Yu, Z.M. Liu, A dual template method for synthesizing hollow silica spheres with mesoporous shells. Mater. Lett. 63, 258–259 (2009)CrossRefGoogle Scholar
  31. 31.
    H.J. Zhang, H.J. Xu, M.H. Wu, Y.F. Zhong, D.H. Wang, Z. Jiao, A soft-hard template approach towards hollow mesoporous silica nanoparticles with rough surfaces for controlled drug delivery and protein adsorption. J. Mater. Chem. B 3, 6480–6489 (2015)CrossRefGoogle Scholar
  32. 32.
    S.N. Wang, M.C. Zhang, D. Wang, W.Q. Zhang, S.X. Liu, Synthesis of hollow mesoporous silica microspheres through surface sol–gel process on polystyrene-co-poly (4-vinylpyridine) core–shell microspheres. Microporous Mesoporous Mater. 139, 1–7 (2011)CrossRefGoogle Scholar
  33. 33.
    Y. Bao, C.H. Shi, T. Wang, X.L. Li, J.Z. Ma, Recent progress in hollow silica: template synthesis, morphologies and applications. Microporous Mesoporous Mater. 227, 121–136 (2016)CrossRefGoogle Scholar
  34. 34.
    D.C. Niu, Z. Ma, Y.S. Li, J.L. Shi, Synthesis of core–shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. J. Am. Chem. Soc. 132, 15144–15147 (2010)CrossRefGoogle Scholar
  35. 35.
    N.L. Qiao, X. Zhang, C. He, Y. Li, Z.Z. Zhang, J. Cheng, Z.P. Hao, Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts. Front. Environ. Sci. Eng. 10, 458–466 (2016)CrossRefGoogle Scholar
  36. 36.
    N.L. Qiao, Y. Li, N. Li, X. Zhang, J. Cheng, Z.P. Hao, High performance Pd catalysts supported on bimodal mesopore silica for the catalytic oxidation of toluene. Chin. J. Catal. 36, 1686–1693 (2015)CrossRefGoogle Scholar
  37. 37.
    C. He, L.L. Xu, L. Yue, Y.T. Chen, J.S. Chen, Z.P. Hao, Supported nanometric Pd hierarchical catalysts for efficient toluene removal: catalyst characterization and activity elucidation. Ind. Eng. Chem. Res. 51, 7211–7222 (2012)CrossRefGoogle Scholar
  38. 38.
    C. He, P. Li, J. Cheng, H.L. Wang, J.J. Li, Q. Li, Z.P. Hao, Synthesis and characterization of Pd/ZSM-5/MCM-48 biporous catalysts with superior activity for benzene oxidation. Appl. Catal. A 2, 167–175 (2010)CrossRefGoogle Scholar
  39. 39.
    T.W. Kim, P.W. Chung, V.S.Y. Lin, Facile synthesis of monodisperse spherical MCM-48 mesoporous silica nanoparticles with controlled particle size. Chem. Mater. 22, 5093–5104 (2010)CrossRefGoogle Scholar
  40. 40.
    J.G. Bell, X.B. Zhao, Y. Uygur, K.M. Thomas, Adsorption of chloroaromatic models for dioxins on porous carbons: the influence of adsorbate structure and surface functional groups on surface interactions and adsorption kinetics. J. Phys. Chem. C 115, 2776–2789 (2011)CrossRefGoogle Scholar
  41. 41.
    X. Lin, A.J. Blake, C. Wilson, X.Z. Sun, N.R. Champness, M.W. George, P. Hubberstey, R. Mokaya, M. Schroder, A porous framework polymer based on a zinc (II) 4,4′-bipyridine-2,6,2′,6′-tetracarboxylate: synthesis, structure, and “zeolite-like” behaviors. J. Am. Chem. Soc. 128, 10754–10753 (2006)CrossRefGoogle Scholar
  42. 42.
    G. Wang, B.J. Dou, J.H. Wang, W.Q. Wang, Z.P. Hao, Adsorption properties of benzene and water vapor on hyper-cross-linked polymers. RSC Adv. 3, 20523–20531 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nanli Qiao
    • 1
    • 2
  • Chi He
    • 3
  • Xin Zhang
    • 2
  • Hongling Yang
    • 2
  • Jie Cheng
    • 2
  • Zhengping Hao
    • 2
  1. 1.Department of Chemical EngineeringBeijng Institute of Petrochemical TechnologyBeijingPeople’s Republic of China
  2. 2.Department of Environmental Nano-materials, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Department of Environmental Science and Engineering, School of Energy and Power EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations