Efficient porous adsorbent for removal of cesium from contaminated water

  • Iuliia Little
  • Esther Alorkpa
  • Valerii Khan
  • Volodymyr Povazhnyi
  • Aleksey Vasiliev


An adsorbent for Cs removal from contaminated water based on phosphotungstic acid (PTA) embedded in SiO2 network was synthesized and granulated with γ-Al2O3. PTA/SiO2 had a high adsorption capacity towards Cs while the binder provided excellent mechanical characteristics of the material. It was shown that small particles of PTA/SiO2 with the sizes of 0.1–1 µm occupied space between larger particles of the binder (up to 5 µm). Chemical interaction between PTA and γ-Al2O3 during the adsorbent preparation also took place. The obtained porous material with the specific surface area of 286.9 m2/g contained 4.73% of PTA. Presence of Keggin units in the structure was confirmed by solid state NMR spectroscopy. Study of the adsorbent in Cs+ adsorption from solutions demonstrated its high adsorption capacity. The concentrations of Cs+ in the solutions after the column tests decreased by 3.3–5.2 times. The presence of Na+ and K+ as competing ions did not affect the adsorption. The material was tested in clean-up of radioactive water from the shelter of Chernobyl nuclear power plant (Ukraine). A significant decrease of 137Cs radioactivity was detected in all samples of radioactive water, especially in acidic solutions. Thus the adsorbent can be used for water treatment after incidents resulting in release of radioactive isotopes 134Cs and 137Cs.


Cesium Adsorption Phosphotungstic acid Silica gel γ-Alumina 



This research was sponsored by NATO’s Emerging Security Challenges Division in the framework of the Science for Peace and Security Programme (Grant SfP 984639). The authors thank S. Bokhvan for XRD study, Dr. V. Trachevsky for acquiring NMR spectra, Prof. F. Hossler for recording SEM images and K. Seaton for assistance in the manuscript preparation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Y.-H. Koo, Y.-S. Yang, K.-W. Song, Prog. Nucl. Energy 74, 61 (2014)CrossRefGoogle Scholar
  2. 2.
    Chernobyl, Assessment of Radiological and Health Impacts. (OECD, Paris, 2002)Google Scholar
  3. 3.
    J.R. Cooper, K. Randle, R.S. Sokhi, Radioactive Releases in the Environment: Impact and Assessment. (Wiley, Hoboken, 2003)Google Scholar
  4. 4.
    IAEA, The Radiological Accident in Goiânia (IAEA, Vienna, 1988)Google Scholar
  5. 5.
    M.K. Pham, M. Betti, H. Nies, P.P. Povinec, J. Environ. Radioactiv. 102, 1045 (2011)CrossRefGoogle Scholar
  6. 6.
    R.M. Cornell, J. Radioanal. Nucl. Chem. 171, 483 (1993)CrossRefGoogle Scholar
  7. 7.
    S. Yang, C. Han, X. Wang, M.J. Nagatsu, Hazard. Mater. 274, 46 (2014)CrossRefGoogle Scholar
  8. 8.
    A.M. El-Kamash, J. Hazard. Mater. 151, 432 (2008)CrossRefGoogle Scholar
  9. 9.
    Y. Lin, G.E. Fryxell, H. Wu, M. Engelhard, Environ. Sci. Technol. 35, 3962 (2001)CrossRefGoogle Scholar
  10. 10.
    T. Sangvanich, V. Sukwarotwat, R.J. Wiacek, R.M. Grudzien, G.E. Fryxell, R.S. Addleman, C. Timchalk, W. Yantasee, J. Hazard. Mater. 182, 225 (2010)CrossRefGoogle Scholar
  11. 11.
    A. Nilchi, H. Atashi, A.H. Javid, R. Saberi, Appl. Radiat. Isot. 65, 482 (2007)CrossRefGoogle Scholar
  12. 12.
    X. Liu, G.R. Chen, D.J. Lee, T. Kawamoto, H. Tanaka, M.L. Chen, Y.K. Luo, Bioresour. Technol. 160, 142 (2014)CrossRefGoogle Scholar
  13. 13.
    M.A. Olatunji, M.U. Khandaker, H.N.M.E. Mahmud, Y.M. Amin, RSC Adv. 5, 71658 (2015)CrossRefGoogle Scholar
  14. 14.
    A. Tarlania, M. Abedinia, A. Nematia, M. Khabazb, M.M. Amini, J. Colloid Interface Sci. 303, 32 (2006)CrossRefGoogle Scholar
  15. 15.
    D. Yang, S. Sarina, H. Zhu, H. Liu, Z. Zheng, M. Xie, S.V. Smith, S. Komarneni, Angew. Chem. Int. Ed. Engl. 50, 10594 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Yang, H. Liu, Z. Zheng, S. Sarina, H. Zhu, Nanoscale 5, 2232 (2013)CrossRefGoogle Scholar
  17. 17.
    O. Adetola, I. Little, R. Mohseni, D. Molodyi, S. Bohvan, L. Golovko, A. Vasiliev, J. Sol-Gel Sci. Technol. 81, 205 (2017)CrossRefGoogle Scholar
  18. 18.
    K. Seaton, I. Little, C. Tate, R. Mohseni, M. Roginskaya, V. Povazhniy, A. Vasiliev, Microporous Mesoporous Mater. 244, 55 (2017)CrossRefGoogle Scholar
  19. 19.
    J.C. Edwards, C.Y. Thiel, B. Benac, J.F. Knifton, Catal. Lett. 51, 77 (1998)CrossRefGoogle Scholar
  20. 20.
    M. Haouas, F. Taulelle, C. Martineau, Prog. Nucl. Magn. Res. Spectrosc. 94–95, 11 (2016)CrossRefGoogle Scholar
  21. 21.
    L. Samain, A. Jaworski, M. Eden, D.M. Ladd, D.-K. Seo, F.J. Garcia-Garcia, U. Häussermann, J. Solid State Chem. 217, 1 (2014)CrossRefGoogle Scholar
  22. 22.
    L. Chen, B. Bai, Int. J. Photoenergy (2013). Google Scholar
  23. 23.
    P. Müller, M. Seeger, J. Tomas, Powder Technol. 237, 125 (2013)CrossRefGoogle Scholar
  24. 24.
    E. Caliman, J.A. Dias, S.C.L. Dias, A.G.S. Prado, Catal. Today 107–108, 816 (2005)CrossRefGoogle Scholar
  25. 25.
    T. Okuhara, S. Tatematsu, K.Y. Lee, M. Misono, Bull. Chem. Soc. Jpn. 62, 717 (1989)CrossRefGoogle Scholar
  26. 26.
    I. Little, K. Seaton, E. Alorkpa, A. Vasiliev, Adsorption 23, 809 (2017)CrossRefGoogle Scholar
  27. 27.
    X. Wang, T. Rabung, H. Geckeis, J. Radioanal. Nucl. Chem. 258, 83 (2003)CrossRefGoogle Scholar
  28. 28.
    T. Okuhara, H. Watanabe, T. Nishimura, K. Inumaru, M. Misono, Chem. Mater. 12, 2230 (2000)CrossRefGoogle Scholar
  29. 29.
    S. Rana, S. Mallick, D. Rath, K.M. Parida, J. Chem. Sci. 124, 1117 (2012)CrossRefGoogle Scholar
  30. 30.
    E. Rafiee, M. Kahrizi, S. Afr. J. Chem. 66, 145 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.East Tennessee State UniversityJohnson CityUSA
  2. 2.Institute for Safety Problems of Nuclear Power PlantsNational Academy of Science of UkraineChernobylUkraine
  3. 3.Institute of Bioorganic Chemistry and PetrochemistryNational Academy of Science of UkraineKievUkraine

Personalised recommendations