Synthesis of layered organic–inorganic nanohybrid zinc–aluminium-2-(4-chlorophenoxy)-2-methyl propionic acid with controlled release properties

  • S. H. Sarijo
  • A. Ahmad
  • S. M. N. Muhsin
  • Z. Jubri


A plant growth regulator, 2-(4-chlorophenoxy)-2-methyl propionic acid (CFA), was successfully intercalated into zinc–aluminium layered double hydroxide (ZAL) forming a new nanohybrid composite, zinc–aluminium-2-(4-chlorophenoxy)-2-methylpropionate layered double hydroxide (ZAC). Well-crystallized nanohybrid composite was obtained when the material was synthesized with zinc to aluminium molar ratio, R = 4 and 0.2 M CFA. Due to the intercalation of CFA, basal spacing expanded from 8.9 Å in the ZAL to 21.4 Å in the ZAC. The FTIR spectra of the ZAC nanohybrid composite show resemblance peaks of the ZAL and CFA indicating the inclusion of the organic compound into the LDH interlamellae. The loading percentage of CFA is 40.0% (w/w) calculated based on the percentage of carbon in the sample. The BET surface area increased from 1.0 to 70.0 m2 g−1 due to the inclusion of CFA into the ZAL interlamellae and associated expansion of the layered structure. Release of CFA from the ZAL interlayer was found to be dependent on the affinity of the incoming anion, in the order of phosphate > sulfate > nitrate with the percentage saturated release of 74, 54, and 42%, respectively. This study indicates the potential application of zinc–aluminium-layered double hydroxide as a host for plant growth regulator, CFA, with controlled release capability.


2-(4-Chlorophenoxy)-2-methyl propionic acid Plant growth regulator Layered double hydroxide Nanohybrid composite 



Funding for this research was provided by the Ministry of Science, Technology and Innovation of Malaysia (MOSTI), under FRGS Grant No. 600-RMI/ST/FRGS 5/3/FST. A.A. thanks UiTM for the SKS scheme under School of Postgraduate Studies, Faculty of Applied Science.


  1. 1.
    J.H. Choy, S.Y. Kwak, Y.S. Han, B.K. Kim, New organo-montmorillonite complexes with hydrophobic and hydrophilic functions. Mater. Lett. 33, 143 (1997)CrossRefGoogle Scholar
  2. 2.
    J.H. Choy, S.Y. Kwak, J.S. Park, Y.J. Jeong, J. Portier, Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide. J. Am. Chem. Soc. 121, 1399–1400 (1999)CrossRefGoogle Scholar
  3. 3.
    S. Miyata, Physicochemical properties of synthetic hydrotalcites in relation to composition. Clays Clay Miner. 28, 50–56 (1980)CrossRefGoogle Scholar
  4. 4.
    V. Rives, Layered Double Hydroxides: Present and Future (Nova Scotia Pub Inc, New York, 2001)Google Scholar
  5. 5.
    U. Constantino, N. Coletti, M. Nochetti, Anion exchange of methyl orange into Zn-Al synthetic hydrotalcite and photophysical characterization of the intercalates obtained. Langmuir 15, 4454–4460 (1999)CrossRefGoogle Scholar
  6. 6.
    A.V. Radha, P.V. Kamath, C. Shivakumara, Mechanism of the anion exchange reactions of the layered double hydroxides (LDHs) of Ca and Mg with Al. Solid State Sci. 7(10), 1180–1187 (2005)CrossRefGoogle Scholar
  7. 7.
    H. Nakayama, N. Wada, M. Tsuhako, Intercalation of amino acids and peptides into Mg-Al layered double hydroxide by reconstruction method. Int. J. Pharm. 269, 469–447 (2004)CrossRefGoogle Scholar
  8. 8.
    J.H. Choy, S.Y. Kwak, J.S. Park, Y.J. Jeong, J.S. Park, Inorganic layered double hydroxides as nonviral vectors. Angew. Chem. Int. Ed. 39, 4041–4045 (2000)CrossRefGoogle Scholar
  9. 9.
    A. Chaparadza, J.M. Hossenlopp, Removal of 2,4-dichlorophenoxyacetic acid by calcined Zn-Al-Zr layered double hydroxide. J. Colloid Interface Sci. 363, 92–97 (2011)CrossRefGoogle Scholar
  10. 10.
    Y. Chao, J. Lee, S. Wang, Preferential adsorption of 2,4-dichlorophenoxyacetate from associated binary-solute aqueous systems by Mg/Al-NO3 layered double hydroxides with different nitrate orientations. J. Hazard Mater. 165, 846–852 (2009)CrossRefGoogle Scholar
  11. 11.
    S. Vreysen, M. Maes, Adsorption mechanism of humic and fulvic acid onto Mg/Al layered double hydroxides. Appl. Clay Sci. 38, 237–249 (2008)CrossRefGoogle Scholar
  12. 12.
    J. Das, D. Das, G.P. Dash, D.P. Das, K. Parida, Studies on Mg/Fe hydrotalcite-like-compound (HTlc):removal of chromium(VI) from aqueous solution. Int. J. Environ. Stud. 61(5), 605–616 (2004)CrossRefGoogle Scholar
  13. 13.
    Y. Xu, Y. Dai, J. Zhou, Z.P. Xu, G. Qian, G.M. Lu, Removal efficiency of arsenate and phosphate from solution using layered double hydroxide materials: intercalation vs. precipitation. J. Mater. Chem. 20, 4684–4691 (2010)CrossRefGoogle Scholar
  14. 14.
    S.H. Sarijo, M.Z. Hussein, N.J. Ghazali, A.I.S.M. Sidek, Synthesis of nanocomposite 2-methyl-4-chlorophenoxyacetic acid with layered double hydroxide: physicochemical characterization and controlled release properties. J. Nanopart. Res. 15(1), 1356–1364 (2013)CrossRefGoogle Scholar
  15. 15.
    F. Bruna, R. Celis, I. Pavlovic, C. Barriga, J. Cornejo, M.A. Ulibarri, Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-2-methylphenoxy) acetic acid (MCPA): systems Mg-Al, Mg-Fe and Mg-Al-Fe. J. Hazard. Mater. 168, 1476–1481 (2009)CrossRefGoogle Scholar
  16. 16.
    M.A. Khan, C. Choi, D. Lee, M. Park, B. Lim, J. Lee, J. Choi, Synthesis and properties of mecoprop-intercalated layered double hydroxide. J. Phys. Chem. Solids 68, 1591–1597 (2007)CrossRefGoogle Scholar
  17. 17.
    Q. Zhenlan, Y. Heng, Z. Bin, H. Wanguo, Synthesis and release behavior of bactericides intercalated Mg-Al layered double hydroxides. Colloids Surf. A 348, 164–169 (2008)CrossRefGoogle Scholar
  18. 18.
    Y. El-Nahhal, S. Nir, T. Polubesova, L. Margulies, B. Rubin, Leaching, phytotoxicity, and weed control of new formulations of alachlor. J. Agric. Food Chem. 46, 3305–3313 (1998)CrossRefGoogle Scholar
  19. 19.
    L.P. Cardoso, R. Celis, J. Cornejo, J.B. Valim, Layered double hydroxides as supports for the slow release of acid herbicides. J. Agric. Food Chem. 54, 5698–5975 (2006)CrossRefGoogle Scholar
  20. 20.
    F. Bruna, R. Celis, M. Real, J. Cornejo, Organo/LDH nanocomposite as an adsorbent of polycyclic aromatic hydrocarbons in water and soil–water systems. J. Hazard. Mater. 225–226, 74–80 (2012)CrossRefGoogle Scholar
  21. 21.
    M. Ariaz-Estevez, E. Lopez-Periago, E. Martinez-Carballo, J. Simal-Gandara, J. Mejuto, L. Garcia-Rio, The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 123, 247–260 (2008)CrossRefGoogle Scholar
  22. 22.
    S. Miyata, Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner. 31(4), 305–311 (1983)CrossRefGoogle Scholar
  23. 23.
    M.,Z. Barahuie, .Hussein,, P. Arulselvan, S. Fakurazi, Z. Zainal, Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods. J. Solid State Chem. 217, 31–41 (2014)CrossRefGoogle Scholar
  24. 24.
    S.P. Newman, W. Jones, Synthesis, characterization and applications of layered double hydroxides containing organic guests. New J. Chem. 22, 105–115 (1998)CrossRefGoogle Scholar
  25. 25.
    D.L. Pavia, G.M. Lampman, G.S. Kriz, J.R. Vyvyan, Introduction to Spectroscopy, 4th edn. (USA Brooks/Cole Cengage Learning, Belmont, 2009)Google Scholar
  26. 26.
    A.M. Bashi, M.Z. Hussein, Z. Zainal, M. Rahmani, D. Tichit, Simultaneous intercalation and release of 2,4-dichloro- and 4-chloro-phenoxy acetates into Zn/Al layered double hydroxide. Arab. J. Chem. 9, S1457–S1463 (2016)CrossRefGoogle Scholar
  27. 27.
    M. Badreddine, A. Legrouri, A. Barroug, J.P. Besse, Ion exchange of different phosphate ions into the zinc-aluminium-chloride layered double hydroxide. Mater. Lett. 38(6), 391–395 (1999)CrossRefGoogle Scholar
  28. 28.
    J.W. Hill, R.H. Petrucci, in General Chemistry. An Integrated Approach, 3rd edn. (Prentice Hall, Hardcover, 2002)Google Scholar
  29. 29.
    H. Zhang, K. Zou, S. Guo, X. Duan, Nanostructural drug-inorganic clay composites: structure, thermal property and in vitro release of captopril-intercalated Mg-Al-layered double hydroxides. J. Solid State Chem. 179, 1792–1801 (2006)CrossRefGoogle Scholar
  30. 30.
    Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Applied SciencesUniversiti Teknologi MARAShah AlamMalaysia
  2. 2.Malaysian Palm Oil BoardKajangMalaysia
  3. 3.Department of Engineering, Sciences and Mathematics, College of EngineeringUniversiti Tenaga NasionalKajangMalaysia

Personalised recommendations