Porous electrospun Casein/PVA nanofibrous mat for its potential application as wound dressing material

  • Santosh Biranje
  • Pallavi Madiwale
  • R. V. Adivarekar


Caseins are phosphoproteins found in milk. Compared with proteins and amino acids, casein contains not only amino acid residues but also large quantities of phosphate groups, providing more active sites. In this work, uniform nanofibrous mats were obtained from various blend ratios of casein and polyvinyl alcohol (PVA) solutions by electrospinning. With above aqueous solution, when the casein/PVA mass ratios were 50/50–20/80, electrospinning of nanofibres were possible. The effect of blend ratio, viscosity and applied voltage on morphological appearance and fibre size was studied. Scanning electron microscopy showed that the addition of PVA facilitated the formation beadless nanofibres whose diameter increased with casein concentration in the range between 80 and 300 nm. Fourier transform infrared spectroscopy and X-ray diffraction studies demonstrated intermolecular hydrogen bonding and changes in crystallinity between the molecules of casein and PVA. Thermal analysis using thermo gravimetric analyzer revealed thermal degradation temperature of nanofibrous mat. BET specific surface area and pore volume of casein/PVA nanofibrous mat was measured to be 52.0541 m2/gm and 0.090 cc/gm respectively. Electrospun casein/PVA nanofibrous mat mimicked the natural biomineralization of bone, demonstrating that, it can effectively improve the bioactivity and be useful for hydroxyapatite formation. Thrombin–antithrombin complex human in vitro ELISA assay for Hemostatic activity of casein/PVA nanofibrous mat demonstrated acceleration in hemostatic activity through higher level of thrombin generation and stable blood clot. Hemostatic activity, in vitro biodegradation in proteinase enzyme and swelling characteristics shows that casein/PVA electrospun mat can have potential biomedical application in wound dressing material.


Casein Electrospinning Nanofibres Biocompatibility Thrombin generation assay 


  1. 1.
    C.M. Vaz, M. Fossen, R.F. van Tuil, L.A. de Graaf, R.L. Reis, A.M. Cunha, J. Biomed. Mater. Res. A 65A(1), 60–70 (2003)CrossRefGoogle Scholar
  2. 2.
    A.U. Daniels, K. Andriano, W. Paul Smutz, M.K.O. Chang, J. Hellert, J. Appl. Biomater. 5, 51–64 (1994)CrossRefGoogle Scholar
  3. 3.
    K.P. Andriano, T. Pohjonen, P. Tormala, J. Appl. Biomater. 5, 133–140 (1994)CrossRefGoogle Scholar
  4. 4.
    Y. Dror, T. Ziv, V. Makarov, H. Wolf, A. Admon, E. Zussman, Biomacromolecules 9, 2749–2754 (2008)CrossRefGoogle Scholar
  5. 5.
    T. Ozeki, V. Verma, M. Uppalapati, Y. Suzuki, M. Nakamura, J.M. Catchmark, W. O. Hancock, Biophys. J. 96, 3305–3318 (2009)CrossRefGoogle Scholar
  6. 6.
    N.N. Li, C.P. Fu, L.M. Zhang, Mater. Sci. Eng. C 36, 287–293 (2014)CrossRefGoogle Scholar
  7. 7.
    Z. Jia, S. Du, Fiber Polym. 7(3), 235–240 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Ghosh, M. Azam Ali, G.J. Dias, Biomacromolecules 10, 1681–1688 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Faergemand, B.S. Murray, E. Dickinson, J. Agric. Food Chem. 45, 2514–2519 (1997)CrossRefGoogle Scholar
  10. 10.
    T.J. Sill, H.A. Recum, Biomaterials 29, 1989–2006 (2008)CrossRefGoogle Scholar
  11. 11.
    J.D. Schiffman, C.L. Schauer, Biomacromolecules 8, 2665–2667 (2007)CrossRefGoogle Scholar
  12. 12.
    S. Agarwal, J.H. Wendorff, A. Greiner, Polymer 49, 5603–5621 (2008)CrossRefGoogle Scholar
  13. 13.
    K. Ohkawa, D. Cha, H. Kim, A. Nishida, H. Yamamoto, Macromol. Rapid Commun. 25, 1600–1605 (2004)CrossRefGoogle Scholar
  14. 14.
    W.H. Park, L. Jeong, D. Yoo, S. Hudson, Polymer 45, 7151–7157 (2004)CrossRefGoogle Scholar
  15. 15.
    E. Mele, J. Meter. Chem. B 4, 4801–4812 (2016)CrossRefGoogle Scholar
  16. 16.
    Z. Abdeen, J. Disper. Sci. Technol. 32, 1337–1344 (2017)CrossRefGoogle Scholar
  17. 17.
    T. Kokubo, H. Takadama, Biomaterials 27, 2907–2915 (2006)CrossRefGoogle Scholar
  18. 18.
    K.K. Gupta, A. Kundan, P.K. Mishra, P. Srivastava, S. Mohanty, N.K. Singh, A. Mishrad, P. Maiti, Phys. Chem. Chem. Phys. 14, 12844–12853 (2012)CrossRefGoogle Scholar
  19. 19.
    P.M. Tomasula, A.M.M. Sousa, S.C. Liou, R. Li, L.M. Bonnaillie, L.S. Liu, J. Dairy. Sci. 3(99), 1–9 (2016)Google Scholar
  20. 20.
    X. Geng, O. Kwon, J. Jang, Biomaterials 26, 5427–5432 (2005)CrossRefGoogle Scholar
  21. 21.
    B. Purevsuren, Y. Davaajav, J. Therm. Anal. Calorim. 65, 147–152 (2001)CrossRefGoogle Scholar
  22. 22.
    Z. Fan, J. Wang, Z. Wang, Z. Li, Y. Qiu, H. Wang, Y. Xu, L. Niu, P. Gong, S. Yang, J. Phys. Chem. C 117, 10375–10382 (2013)CrossRefGoogle Scholar
  23. 23.
    D. Brahatheeswaran, A. Mathew, R.G. Aswathy, Y. Nagaoka, K. Venugopal, Y. Yoshida, T. Maekawa, D. Sakthikumar, Biomed. Mater. 7, 045001 (2012)Google Scholar
  24. 24.
    S.A. Smith, J.H. Morrissey, Blood 112, 2810–2816 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Santosh Biranje
    • 1
  • Pallavi Madiwale
    • 1
  • R. V. Adivarekar
    • 1
  1. 1.Department of Fibres & Textile Processing TechnologyInstitute of Chemical Technology [ICT]MumbaiIndia

Personalised recommendations