Preparation of silver supported porous 4A-zeolite through hard template agent combined with heat treatment and study on its catalytic performance

  • Youkui Wu
  • Chunping Li
  • Jie Bai


A simple and novel scheme for preparing hierarchical porous 4A-zeolite was introduced in this study. By Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), X-Ray Powder Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Simultaneous Thermal Analysis (STA), Transmission Electron Microscopy (TEM), CO2 adsorption–desorption (BET and BJH) and UV–vis spectra, the silver nanoparticles supported samples of microporous-macroporous hierarchical 4A-zeolite (Ag/P-4A-zeolite) were proven to be successfully synthesized. TEM and CO2 adsorption–desorption images indicated the presence of microporous and the formation of macroporous. XRD, ICP-AES and UV–vis spectra indicated that obtained P-4A-zeolite possess silver nanoparticles. In addition, the catalytic results showed that the silver loaded hierarchical porous 4A-zeolite (Ag/P-4A-zeolite) composite catalyst had catalytic performance in hydrogenation of 4-nitrophenol (4-NP) and epoxidation of styrene.


Composite catalyst 4-Nitrophenol Porous 4A-zeolite Silver nanoparticles Styrene epoxidation 



The authors gratefully acknowledge the support of the National Natural Science Foundation of China (21366016), the Inner Mongolia Natural Science Foundation (2017MS(LH)0207), and Inner Mongolia Autonomous Region Science and Technology Research Project (NJZY16087).


  1. 1.
    W. Zhou, D. Zhang, D. Bai, S. Li, X. Wang, Medium effect on dielectric relaxation behaviors of 4A zeolite bulk dispersion system. Chin. Chem. Lett. 26, 1255–1258 (2015)CrossRefGoogle Scholar
  2. 2.
    X. Xi, Z. Zheng, X. Wang, S. Zhang, M. Zhao, Fabrication of hierarchical zeolite 4A microspheres with improved adsorption capacity to bromofluoropropene and their fire suppression performance. J. Alloy Compd. 592, 135–139 (2014)CrossRefGoogle Scholar
  3. 3.
    R.S. Murali, A.F. Ismail, M.A. Rahman, S. Sridhar, Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Sep. Purif. Technol. 129, 1–8 (2014)CrossRefGoogle Scholar
  4. 4.
    X. Wang, K. Wang, C.A. Plackowski, A.V. Nguyen, Sulfuric acid dissolution of 4A and Na-Y synthetic zeolites and effects on Na-Y surface and particle properties. Appl. Surf. Sci. 367, 281–290 (2016)CrossRefGoogle Scholar
  5. 5.
    P. Svejda, A.H. Maki, Optical detection of the triplet-state magnetic resonance (ODMR) of sulfur dioxide adsorbed on zeolite 4A. Chem. Phys. Lett. 83, 610–614 (1981)CrossRefGoogle Scholar
  6. 6.
    M.V. Šušić, N.A. Petranović, D.A. Mioč, The properties of zeolite 4 A treated in molten salts. J. Radioanal. Nucl. Chem. 33, 2667–2675 (1971)CrossRefGoogle Scholar
  7. 7.
    K. Hui, C. Chao, Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents. J. Hazard. Mater. 137, 401–409 (2006)CrossRefGoogle Scholar
  8. 8.
    A.M. Cardoso, M.B. Horn, L.S. Ferret, C.M. Azevedo, M. Pires, Integrated synthesis of zeolites 4A and Na-P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment. J. Hazard. Mater. 287, 69–77 (2015)CrossRefGoogle Scholar
  9. 9.
    X. Liu, R. Wang, Effective removal of hydrogen sulfide using 4A molecular sieve zeolite synthesized from attapulgite. J. Hazard. Mater. 326, 157–164 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Sun, L. Chen, X. Li, Y. Yang, Y. Ouyang, W. Geng, Y. Li, X. Yang, B. Su, A comparative study of hierarchically micro-meso-macroporous solid-acid catalysts constructed by zeolites nanocrystals synthesized via a quasi-solid-state crystallization process. Microporous Mesoporous Mater. 182, 122–135 (2013)CrossRefGoogle Scholar
  11. 11.
    L. Chen, S. Xu, X. Li, G. Tian, Y. Li, J.C. Rooke, G. Zhu, S. Qiu, Y. Wei, X. Yang, Z. Liu, B. Su, Multimodal Zr-Silicalite-1 zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macroporous architecture and enhanced mass transport property. J. Colloid Interface Sci. 377, 368–374 (2012)CrossRefGoogle Scholar
  12. 12.
    A.H. Janssen, I. Schmidt, C.J.H. Jacobsen, A.J. Koster, K.P.D. Jong, Exploratory study of mesopore templating with carbon during zeolite synthesis. Microporous Mesoporous Mater. 65, 59–75 (2003)CrossRefGoogle Scholar
  13. 13.
    K. Cho, K. Na, J. Kim, O. Terasaki, R. Ryoo, Zeolite synthesis using hierarchical structure-directing surfactants: retaining porous structure of initial synthesis gel and precursors. Chem. Mater. 24, 2733–2738 (2012)CrossRefGoogle Scholar
  14. 14.
    C. Jo, W. Park, R. Ryoo, Synthesis of mesoporous zeolites in fluoride media with structure-directing multiammonium surfactants. Microporous Mesoporous Mater. 239, 19–27 (2016)CrossRefGoogle Scholar
  15. 15.
    P. Vasiliev, F. Akhtar, J. Grins, J. Mouzon, C. Andersson, J. Hedlund, L. Bergstrom, Strong hierarchically porous monoliths by pulsed current processing of zeolite powder assemblies. ACS Appl. Mater. Interfaces. 2, 732–737 (2010)CrossRefGoogle Scholar
  16. 16.
    M.S.L. Yee, P.S. Khiew, Y.F. Tan, W.S. Chiu, Y.Y. Kok, C.O. Leong, Low temperature, rapid solution growth of antifouling silver-zeolite nanocomposite clusters. Microporous Mesoporous Mater. 218, 69–78 (2015)CrossRefGoogle Scholar
  17. 17.
    X. Ding, P. Yuan, N. Gao, H. Zhu, Y. Yang, Q. Xu, Au-Ag core-shell nanoparticles for simultaneous bacterial imaging and synergistic antibacterial activity. Nanomed-Nanotechnol. 13, 297–305 (2017)CrossRefGoogle Scholar
  18. 18.
    J. Safari, Z. Zarnegar, M. Sadeghi, A. Enayati-Najafabadi, Dendritic macromolecules supported Ag nanoparticles as efficient catalyst for the reduction of 4-nitrophenol. J. Mol. Struct. 1125, 772–776 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Śrębowata, R. Baran, G. Słowik, D. Lisovytskiy, S. Dzwigaj, Influence of the postsynthesis preparation procedure on catalytic behaviour of Ag-loaded bea zeolites in the hydrodechlorination of 1,2-dichloroethane into value added products. Appl. Catal. B. 199, 514–522 (2016)CrossRefGoogle Scholar
  20. 20.
    E. Kolobova, A. Pestryakov, A. Shemeryankina, Y. Kotolevich, O. Martynyuk, H.J. Tiznado Vazquez, N. Bogdanchikova, Formation of silver active states in Ag/ZSM-5 catalysts for CO oxidation. Fuel. 138, 65–71 (2014)CrossRefGoogle Scholar
  21. 21.
    N. Popovych, P. Kyriienko, S. Soloviev, R. Baran, Y. Millot, S. Dzwigaj, Identification of the silver state in the framework of Ag-containing zeolite by XRD, FTIR, photoluminescence, 109Ag NMR, EPR, DR UV–vis, TEM and XPS Investigations. Phys. Chem. Chem. Phys. 18, 29458–29465 (2016)CrossRefGoogle Scholar
  22. 22.
    H. Lin, K. Imakita, M. Fujii, Reversible emission evolution from Ag activated zeolite Na-A upon dehydration/hydration. Appl. Phys. Lett. 105, 211903 (2014)CrossRefGoogle Scholar
  23. 23.
    B. Pant, H.R. Pant, D.R. Pandeya, G. Panthi, K.T. Nam, S.T. Hong, C.S. Kim, H.Y. Kim, Characterization and antibacterial properties of Ag NPs loaded nylon-6 nanocomposite prepared by one-step electrospinning process. Colloid. Surface. A. 395, 94–99 (2012)CrossRefGoogle Scholar
  24. 24.
    E. Kolobova, A. Pestryakov, G. Mamontov, Y. Kotolevich, N. Bogdanchikova, M. Farias, A. Vosmerikov, L. Vosmerikova, V. Cortes, Corberan, Low-temperature CO oxidation on Ag/ZSM-5 catalysts: influence of Si/Al ratio and redox pretreatments on formation of silver active sites. Fuel. 188, 121–131 (2017)CrossRefGoogle Scholar
  25. 25.
    S.G. Chiodo, T. Mineva, Stability and structures of silver subnanometer clusters in EMT zeolite with maximum aluminum content. J. Phys. Chem. C. 120, 4471–4480 (2016)CrossRefGoogle Scholar
  26. 26.
    D. Yu, J. Bai, H. Liang, C. Li, Electrospinning, solvothermal, and self-assembly synthesis of recyclable and renewable AgBr-TiO2/CNFs with excellent visible-light responsive photocatalysis. J. Alloy. Compd. 683, 329–338 (2016)CrossRefGoogle Scholar
  27. 27.
    C. Tran, V. Kalra, Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. J. Power. Sources. 235, 289–296 (2013)CrossRefGoogle Scholar
  28. 28.
    S. Li, Y. Zhao, C. Wang, D. Li, K. Gao, Fabrication and characterization unique ribbon-like porous Ag/LaFeO3 nanobelts photocatalyst via electrospinning. Mater. Lett. 170, 122–125 (2016)CrossRefGoogle Scholar
  29. 29.
    X. Hu, J. Bai, J. Wang, C. Li, W. Xu, Preparation of 4A-zeolite-based Ag nanoparticle composite catalyst and research of the catalytic properties. RSC Adv. 5, 2968–2973 (2015)CrossRefGoogle Scholar
  30. 30.
    X. Hu, J. Bai, H. Hong, C. Li, Synthesis of Ag-loaded 4A-zeolite composite catalyst via supercritical CO2 fluid for styrene epoxidation. Microporous Mesoporous Mater. 228, 224–230 (2016)CrossRefGoogle Scholar
  31. 31.
    X. Hu, J. Bai, H. Hong, C. Li, Supercritical carbon dioxide anchored highly dispersed silver nanoparticles on 4A-zeolite and selective oxidation of styrene performance. CrystEngComm. 18, 2469–2476 (2016)CrossRefGoogle Scholar
  32. 32.
    L. Ferreira, J.F. Guedes, C. Almeidaaguiar, A.M. Fonseca, I.C. Neves, Microbial growth inhibition caused by Zn/Ag-Y zeolite materials with different amounts of silver. Colloids Surf. B. 142, 141–147 (2016)CrossRefGoogle Scholar
  33. 33.
    M. Konkol, M. Kondracka, P. Kowalik, W. Próchniak, K. Michalska, A. Schwedt, C. Merkens, U. Englert, Decomposition of the mixed-metal coordination polymer—a preparation route of the active Ag/Yb2O3 catalyst for the deN2O process. Appl. Catal. B. 190, 85–92 (2016)CrossRefGoogle Scholar
  34. 34.
    M. Arab Chamjangali, G. Bagherian, A. Javid, S. Boroumand, N. Farzaneh, Synthesis of Ag-ZnO with multiple rods (multipods) morphology and its application in the simultaneous photo-catalytic degradation of methyl orange and methylene blue. Spectrochim. Acta. A. 150, 230–237 (2015)CrossRefGoogle Scholar
  35. 35.
    N. Jiang, J. Hu, J. Li, K. Shang, N. Lu, Y. Wu, Plasma-catalytic degradation of benzene over Ag–Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas. Appl. Catal. B. 184, 355–363 (2015)CrossRefGoogle Scholar
  36. 36.
    K. Yamazaki, T. Kayama, F. Dong, H. Shinjoh, A mechanistic study on soot oxidation over CeO2–Ag catalyst with ‘rice-ball’ morphology. J. Catal. 282, 289–298 (2011)CrossRefGoogle Scholar
  37. 37.
    Y. Wu, C. Li, J. Bai, J. Wang, The fabrication of porous 4A-zeolite-supported Ag nanoparticles catalysts and its catalytic activity for styrene epoxidation. Results Phys. 7, 1616–1622 (2017)CrossRefGoogle Scholar
  38. 38.
    C. Nie, Y. Yang, C. Cheng, L. Ma, J. Deng, L. Wang, C. Zhao, Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications. Acta Biomater. 51, 479–494 (2017)CrossRefGoogle Scholar
  39. 39.
    M. Sajjadi, M. Nasrollahzadeh, S.S. Mohammad, Green synthesis of Ag/Fe3O4 nanocomposite using euphorbia peplus linn leaf extract and evaluation of its catalytic activity. J. Colloid Interface Sci. 497, 1–13 (2017)CrossRefGoogle Scholar
  40. 40.
    D.V.R. Kumar, B.L.V. Prasad, A.A. Kulkarni, Segmented flow synthesis of Ag nanoparticles in spiral microreactor: role of continuous and dispersed phase. Chem. Eng. J. 192, 357–368 (2012)CrossRefGoogle Scholar
  41. 41.
    C. Li, X. Li, X. Duan, G. Li, J. Wang, Halloysite nanotube supported Ag nanoparticles heteroarchitectures as catalysts for polymerization of alkylsilanes to superhydrophobic silanol/siloxane composite microspheres. J. Colloid. Interface. Sci. 436, 70–76 (2014)CrossRefGoogle Scholar
  42. 42.
    Y. Zheng, J. Shu, Z. Wang, Agcl@Ag composites with rough surfaces as bifunctional catalyst for the photooxidation and catalytic reduction of 4-Nitrophenol. Mater. Lett. 158, 339–342 (2015)CrossRefGoogle Scholar
  43. 43.
    J. Gao, J. Xu, S. Wen, J. Hu, H. Liu, Plasma-assisted synthesis of Ag nanoparticles immobilized in mesoporous cellular foams and their catalytic properties for 4-nitrophenol reduction. Microporous Mesoporous Mater. 207, 149–155 (2015)CrossRefGoogle Scholar
  44. 44.
    W.H. Eisa, A.A. Shabaka, Ag seeds mediated growth of Au nanoparticles within PVA matrix: an eco-friendly catalyst for degradation of 4-nitrophenol. React. Funct. Polym. 73, 1510–1516 (2013)CrossRefGoogle Scholar
  45. 45.
    X. Hu, J. Bai, C. Li, H. Liang, Y. Wu, Ag-doped 4A-zeolite as an efficient catalyst in the epoxidation of styrene. React. Kinet. Mech. Catal. 120, 359–370 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemical Engineering CollegeInner Mongolia University of TechnologyHuhhotePeople’s Republic of China

Personalised recommendations