Cascade use of bamboo as raw material for several high value products: production of xylo-oligosaccharide and activated carbon for EDLC electrode from bamboo

Abstract

The cascade use of bamboo as the raw material for high-value products, that is, the production of xylo-oligosaccharide and the preparation of activated carbon for EDLC electrode, was proposed as an economically effective use of bamboo in this study. Xylo-oligosaccharides, such as xylobiose and xylotriose, were successfully produced from bamboo in a water solution by a hot compressed water process. The solid residue of bamboo after the treatment of the hot compressed water was carbonized at 400–800 °C, then activated with KOH. The KOH activation was effective for the preparation of activated carbon having a high BET specific surface area of ca. 2600 m2 g−1 from the solid residue. The amount of ash drastically decreased by the hot compressed water treatment, which should be an advantage as the precursor for EDLC electrodes. The capacitance values measured in a 1 M H2SO4 aqueous solution of the activated carbon derived from the solid residue compared well with those from the bamboo.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    H. Ando, H. Ohba, T. Sakaki, K. Takamine, Y. Kamino, S. Moriwaki, R. Bakalova, Y. Uemura, Y. Hatate, Hot-compressed-water decomposed products from bamboo manifest a selective cytotoxicity against acute lymphoblastic leukemia cells. Toxicol. In Vitro 18, 765–771 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    D. Gonzaleza, V. Santosa, J.C. Parajo, Manufacture of fibrous reinforcements for biocomposites and hemicellulosic oligomers from bamboo. Chem. Eng. J. 167, 278–287 (2011)

    Article  CAS  Google Scholar 

  3. 3.

    W. Gu, G. Yushin, Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. WIREs Energy Environ. 3, 424–473 (2014)

    Article  CAS  Google Scholar 

  4. 4.

    G.Z. Chen, Supercapacitor and supercapattery as emerging electrochemical energy stores. Int. Mater. Rev. 62, 173–202 (2017)

    Article  CAS  Google Scholar 

  5. 5.

    A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)

    Article  CAS  Google Scholar 

  6. 6.

    Q. Wang, J. Yan, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9, 729–762 (2016)

    Article  CAS  Google Scholar 

  7. 7.

    Z. Wu, L. Li, J. Yan, X. Zhang, Materials design and system construction for conventional and new-concept supercapacitors. Adv. Sci. 4, 1600382 (2017)

    Article  CAS  Google Scholar 

  8. 8.

    J. Wang, P. Nie, B. Ding, S. Dong, X. Hao, H. Dou, X. Zhang, Biomass derived carbon for energy storage devices. J. Mater. Chem. A. 5, 2411–2428 (2017)

    Article  CAS  Google Scholar 

  9. 9.

    P. Gonzalez-Garcia, T.A. Centeno, E. Urones-Garrote, D. Avila-Brande, L.C. Otero-Diaz, Microstructure and surface properties of lignocellulosic-based activated carbons. Appl. Surf. Sci. 265, 731–737 (2013)

    Article  CAS  Google Scholar 

  10. 10.

    H. Chena, D. Liu, Z. Shen, B. Bao, S. Zhao, L. Wu, Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials. Electrochim. Acta. 180, 241–251 (2015)

    Article  CAS  Google Scholar 

  11. 11.

    A.M. Abioye, F.N. Ani, Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew. Sustain. Energy Rev. 52, 1282–1293 (2015)

    Article  CAS  Google Scholar 

  12. 12.

    P. Kalyani, A. Anitha, Biomass carbon & its prospects in electrochemical energy systems. Int. J. Hydrogen Energy 38, 4034–4045 (2013)

    Article  CAS  Google Scholar 

  13. 13.

    J. Jiang, L. Zhang, X. Wang, N. Holm, K. Rajagopalan, F. Chen, S. Ma, Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim. Acta 113, 481–489 (2013)

    Article  CAS  Google Scholar 

  14. 14.

    Y.-J. Kim, B.-J. Lee, H. Suezaki, T. Chino, Y. Abe, T. Yanagiura, K.C. Park, M. Endo, Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors. Carbon 44, 1581–1616 (2006)

    Article  CAS  Google Scholar 

  15. 15.

    C.-S. Yang, Y.S. Jang, H.K. Jeong, Bamboo-based activated carbon for supercapacitor applications. Curr. Appl. Phys. 14, 1616–1620 (2014)

    Article  Google Scholar 

  16. 16.

    M. Fujishige, I. Yoshida, Y. Toya, Y. Banba, K. Oshida, Y. Tanaka, P. Dulyaseree, W. Wongwiriyapan, K. Takeuchi, Preparation of activated carbon from bamboo-cellulose fiber and its use for EDLC electrode material. J. Environ. Chem. Eng. 5, 1801–1808 (2017)

    Article  CAS  Google Scholar 

  17. 17.

    T. Tsubota, M. Morita, S. Kamimura, T. Ohno, Performance as electrode of electrical double layer capacitor of activated carbon prepared from bamboo using guanidine phosphate and CO2 activation., J. Porous Mater. (2017). https://doi.org/10.1007/s10934-017-0390-5

    Article  Google Scholar 

  18. 18.

    T. Tsubota, Y. Maguchi, S. Kamimura, T. Ohno, T. Yasuoka, H. Nishida, Catalytic graphitization for preparation of porous carbon material derived from bamboo precursor and performance as electrode of electrical double-layer capacitor. J. Electron. Mater. 44, 4933–4939 (2015)

    Article  CAS  Google Scholar 

  19. 19.

    N.A. Echeverry-Montoya, J.J. Prias-Barragan, L. Tirado-Mejia, C. Agudelo, G. Fonthal, H. Ariza-Calderon, Fabrication and electrical response of flexible supercapacitor based on activated carbon from bamboo. Phys. Status Solidi C. 14, 1600258 (2017)

    Google Scholar 

  20. 20.

    X. Zhou, L. Li, S. Dong, X. Chen, P. Han, H. Xu, J. Yao, C. Shang, Z. Liu, G. Cui, A renewable bamboo carbon/polyaniline composite for a high-performance supercapacitor electrode material. J. Solid State Electrochem. 16, 877–882 (2012)

    Article  CAS  Google Scholar 

  21. 21.

    G. Zhang, H. Chen, W. Liu, D. Wang, Y. Wang, Bamboo chopsticks-derived porous carbon microtubes/flakes composites for supercapacitor electrodes. Mater. Lett. 185, 359–362 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS KAKENHI Grant Number JP 17K06031. The authors are grateful for JSPS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Toshiki Tsubota.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 80 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsubota, T., Ishimoto, K., Kumagai, S. et al. Cascade use of bamboo as raw material for several high value products: production of xylo-oligosaccharide and activated carbon for EDLC electrode from bamboo. J Porous Mater 25, 1541–1549 (2018). https://doi.org/10.1007/s10934-018-0567-6

Download citation

Keywords

  • Bamboo
  • Cascading
  • Hot compressed water
  • Oligosaccharide
  • Activated carbon
  • Electric double layer capacitor