Skip to main content
Log in

Anatase TiO2 nanocrystals via dihydroxy bis (ammonium lactato) titanium (IV) acidic hydrolysis and its performance in dye-sensitized solar cells

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The conventional way to synthesize anatase TiO2 with dihydroxy bis (ammonium lactato) titanium (IV) (TALH) is adjusting pH value of precursor solution to basic condition. In this paper, we prepared white color anatase TiO2 under acid condition via a hydrothermal route. TEM image shows the TiO2 has a sharp contour and crystallite size is about 5–10 nm. The TiO2 also has specific surface area of 97 m2/g and its average pore diameter is about 8.5 nm after sintering at 500 °C for 30 min. These characters make it to be a proper candidate for DSSCs’ photoanode. By comparing the DSSCs’ performance between the TiO2 we have synthesized (A35) and P25, A35 has energy conversion efficiency of 6.92% without any scattering layers, which was 17.9% higher than P25 photoanode. The higher specific area and good pore diameter distribution of A35 make photoanode absorb more dye molecules. The IPCE curve and dye absorbing experiment further confirmed the above mentioned results. DSSCs’ analysis revealed the white color anatase TiO2 could be achieved under acid condition when using TALH precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, Nature 353, 737–740 (1991)

    Article  Google Scholar 

  2. M. Grätzel, R.A. Janssen, D.B. Mitzi, E.H. Sargent, Nature 488, 304–312 (2012)

    Article  CAS  Google Scholar 

  3. Y. Rui, L. Wang, J. Zhao, H. Wang, Y. Li, Q. Zhang, J. Xu, Appl. Surf. Sci. 369, 170–177 (2016)

    Article  CAS  Google Scholar 

  4. R. Lupitskyy, V.K. Vendra, J. Jasinski, D.A. Amos, M.K. Sunkara, T. Druffel, Prog. Photovolt. 23, 883–891 (2015)

    Article  CAS  Google Scholar 

  5. Y. Hao, Y. Rui, Y. Li, Q. Zhang, H. Wang, Electrochim. Acta 117, 268–275 (2014)

    Article  CAS  Google Scholar 

  6. M. Gao, Y. Rui, H. Wang, Y. Li, Q. Zhang, J. Phys. Chem. C 118, 16951–16958 (2014)

    Article  CAS  Google Scholar 

  7. G. Kato, C. Nishiyama, T. Yabuta, M. Miyauchi, T. Hashimoto, T. Isobe, A. Nakajima, S. Matsushita, J. Porous Mater. 21, 165–176 (2014)

    Article  CAS  Google Scholar 

  8. N. Santhosh, R. Govindaraj, M. Senthil Pandian, P. Ramasamy, S. Mukhopadhyay, J. Porous Mate.r 23, 1483–1487 (2016)

    Article  CAS  Google Scholar 

  9. L.Y. Chen, Y.T. Yin, Nanoscale 5, 1777–1780 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. M. McCune, W. Zhang, Y. Deng, Nano Lett. 12, 3656–3662 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. J. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. Cao, X. Ai, H. Yang, Adv. Mater. 21, 3663–3667 (2009)

    Article  CAS  Google Scholar 

  12. H. Zhang, R. Wu, H. Xu, F. Li, S. Wang, J. Wang, T. Zhang, RSC Adv. 7, 12446–12454 (2017)

    Article  CAS  Google Scholar 

  13. Q. Zhang, L. Gao, J.K. Guo, Nanostruct. Mater. 11, 1293–1300 (1999)

    Article  CAS  Google Scholar 

  14. Q. Zhang, L. Gao, Langmuir 19, 967–971 (2003)

    Article  CAS  Google Scholar 

  15. J. Sun, L. Gao, J. Am. Ceram. Soc. 85, 2382–2384 (2002)

    Article  CAS  Google Scholar 

  16. B.E. Yoldas, J. Mater. Sci. 21, 1087–1092 (1986)

    Article  CAS  Google Scholar 

  17. F. Xu, K. Zhu, Y. Zhao, RSC Adv. 6, 98167–98170 (2016)

    Article  CAS  Google Scholar 

  18. Y. Fu, Y. Liu, Z. Shi, B. Li, W. Pang, J. Solid State Chem. 163, 427–435 (2002)

    Article  CAS  Google Scholar 

  19. Z. Zhang, S. Brown, J.B.M. Goodall, X. Weng, K. Thompson, K. Gong, S. Kellici, R.J.H. Clark, J.R.G. Evans, J.A. Darr, J. Alloys Compd. 476, 451–456 (2009)

    Article  CAS  Google Scholar 

  20. N.M. Kinsinger, A. Wong, D. Li, F. Villalobos, D. Kisailus, Cryst. Growth Des. 10, 5254–5261 (2010)

    Article  CAS  Google Scholar 

  21. K. Pelentridou, E. Stathatos, P. Lianos, V. Drakopoulos, J. Nanosci. Nanotechnol. 10, 6093–6098 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. M. Chigane, T. Shinagawa, J. Electrochem. Soc. 161, E40–E43 (2014)

    Article  CAS  Google Scholar 

  23. G.A. Seisenbaeva, G. Daniel, J.M. Nedelec, V.G. Kessler, Nanoscale 5, 3330–3336 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. H. Möckel, M. Giersig, F. Willig, J. Mater. Chem. 9, 3051–3056 (1999)

    Article  Google Scholar 

  25. N.G. Park, J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 104, 8989–8994 (2000)

    Article  CAS  Google Scholar 

  26. M. Yoshizawa, M. Kobayashi, V. Petrykin, H. Kato, M. Kakihana, J. Mater. Res. 29, 90–97 (2014)

    Article  CAS  Google Scholar 

  27. S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, M. Grätzel, Thin solid films 516, 4613–4619 (2008)

    Article  CAS  Google Scholar 

  28. D. Qian, Y. Li, Q. Zhang, G. Shi, H. Wang, J. Alloy. Compd. 509, 10121–10126 (2011)

    Article  CAS  Google Scholar 

  29. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 115, 6382–6390 (1993)

    Article  CAS  Google Scholar 

  30. H. Zhang, J.F. Banfield, J. Phys. Chem. B 104, 3481–3487 (2000)

    Article  CAS  Google Scholar 

  31. J. Chae, M. Kang, J. Power Sources 196, 4143–4151 (2011)

    Article  CAS  Google Scholar 

  32. D. Chen, F. Huang, Y.B. Cheng, R.A. Caruso, Adv. Mater. 21, 2206–2210 (2009)

    Article  CAS  Google Scholar 

  33. Z.Q. Li, Y. Ding, L.E. Mo, L.H. Hu, J.H. Wu, S.Y. Dai, ACS Appl. Mater. Int. 7, 22277–22283 (2015)

    Article  CAS  Google Scholar 

  34. B. Chi, L. Zhao, J. Li, J. Pu, Y. Chen, C. Wu, T. Jin, J. Nanosci. Nanotechnol. 8, 3877–3882 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. K. Pan, W. Zhou, G. Tian, Q. Pan, C. Tian, T. Xie, Y. Dong, D. Wang, H. Fu, Eur. J. Inorg. Chem. 2011, 4730–4737(2011)

    Article  CAS  Google Scholar 

  36. Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coordin. Chem. Rev 248, 1381–1389 (2004)

    Article  CAS  Google Scholar 

  37. D. Zheng, J. Xiong, P. Guo, Y. Li, H. Gu, J. Nanosci. Nanotechnol. 16, 613–618 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. W.C. Chang, B.H. Tang, Y.W. Lu, W.C. Yu, L.Y. Lin, R.J. Wu, J. Power Sources 319, 131–138 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by “chunhui” project of China national Ministry of Education (No. Z2015044), foundation for young scholars of Qinghai University (No. 2015-QGY-2) and foundation for young scholars of Qinghai Science & Technology Department (No. 2015-ZJ-932Q). Thank Dr. Rui and Dr. Hou for discussing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Si or Qinghong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Ma, Y., Qi, L. et al. Anatase TiO2 nanocrystals via dihydroxy bis (ammonium lactato) titanium (IV) acidic hydrolysis and its performance in dye-sensitized solar cells. J Porous Mater 25, 1499–1504 (2018). https://doi.org/10.1007/s10934-018-0562-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0562-y

Keywords

Navigation