Characterisation of steam-treated nanoporous carbide-derived carbon of TiC origin: structure and enhanced electrochemical performance

  • Maike Käärik
  • Mati Arulepp
  • Mati Kook
  • Uno Mäeorg
  • Jekaterina Kozlova
  • Väino Sammelselg
  • Anti Perkson
  • Jaan Leis
Article
  • 94 Downloads

Abstract

Modifications of pore size distribution and structural order of nanoporous carbide-derived carbon (CDC) materials with variety of surface areas and pore sizes were investigated using physical activation by etching with water vapour. Variable etching duration was used to explore the activation impact on the pore size distribution and the adsorption behaviour of TiC-derived carbon. A distribution of micro- and mesopores, modified during physical activation, was studied using N2 and CO2 adsorption. Notable impact of preceding carbon structure on the activation product was revealed by the results of scanning electron microscopy, powder X-ray diffraction and Raman spectroscopy. An infrared spectroscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy confirmed that water-induced etching of CDC followed by high-temperature treatment in inert gas atmosphere does not change notably the total amount of surface oxygen, however, leads to the changes in a composition of oxygen containing functional groups in post-activated carbon. The electrochemical evaluation was performed in triethylmethylammonium tetrafluoroborate/acetonitrile electrolyte to elaborate the structure-electrochemical properties relationships on post-activated nanoporous CDC materials. It was observed that the degree of improvement in double-layer capacitance achievable with a steam-treatment significantly depends on the preceding properties of CDC prior treatment, whereby the highest capacitance, ~ 160 Fg−1, was reached for the steam-treated TiC-derived CDC made at 800 °C, which clearly is a very promising material for the electrical double-layer capacitor.

Keywords

CDC Microporous carbon Post-activation Adsorption Double-layer capacitance 

Notes

Acknowledgements

This work was financially supported by institutional research funding of the Estonian Ministry of Education and Research (IUT34-14) and by the EU through the FP7 project HESCAP. Colleagues from Skeleton Technologies OÜ are thanked for the assistance in preparation of this paper.

References

  1. 1.
    F. Beguin, E. Frackowiak, Supercapacitors: Materials, Systems, and Applications (Wiley, New York, 2013)CrossRefGoogle Scholar
  2. 2.
    M. Inagaki, H. Konno, O. Tanaike, J. Power Sources 195, 7880 (2010)CrossRefGoogle Scholar
  3. 3.
    A. Burke, J. Power Sources 91, 37–50 (2000)CrossRefGoogle Scholar
  4. 4.
    B.E. Conway, Electrochemical Supercapacitors. Scientific Fundamentals and Technological Applications (Kluwer Academic Publishers/Plenum, New York, 1999)Google Scholar
  5. 5.
    O. Barbieri, M. Hahn, A. Herzog, R. Kötz, Carbon 43, 1303 (2005)CrossRefGoogle Scholar
  6. 6.
    G. Yushin, A. Nikitin, Y. Gogotsi, Carbide-Derived Carbon, ed. by Y. Gogotsi. Nanomaterials Handbook, vol. 3 (CRC Press, Boca Raton, 2006), pp. 239–282Google Scholar
  7. 7.
    M. Arulepp, L. Permann, J. Leis, A. Perkson, K. Rumma, A. Jänes et al., J. Power Sources 133, 320 (2004)CrossRefGoogle Scholar
  8. 8.
    L. Permann, M. Lätt, J. Leis, M. Arulepp, Electrochim. Acta 51, 1274 (2006)CrossRefGoogle Scholar
  9. 9.
    R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer et al., Carbon 44, 2489 (2006)CrossRefGoogle Scholar
  10. 10.
    Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J.E. Fischer, B. Yiet al, Nat. Mater. 2, 591 (2003)CrossRefGoogle Scholar
  11. 11.
    V. Presser, M. Heon, Y. Gogotsi, Adv. Funct. Mater. 21, 810 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Leis, M. Arulepp, A. Kuura, M. Lätt, E. Lust, Carbon 44, 2122 (2006)CrossRefGoogle Scholar
  13. 13.
    M. Arulepp, J. Leis, A. Kuura, M. Lätt, E. Lust, A.F. Burke, J. Power Sources 162, 1460 (2006)CrossRefGoogle Scholar
  14. 14.
    J. Leis, A. Perkson, M. Arulepp, M. Käärik, G. Svensson, Carbon 39, 2043 (2001)CrossRefGoogle Scholar
  15. 15.
    S. Urbonaite, J.M. Juárez-Galán, J. Leis, F. Rodríguez-Reinoso, G. Svensson, Microporous Mesoporous Mater. 113, 14 (2008)CrossRefGoogle Scholar
  16. 16.
    J. Leis, M. Arulepp, M. Käärik, A. Perkson, Carbon 48, 4001–4008 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Ue, J. Electrochem. Soc. 141, 3336 (1994)CrossRefGoogle Scholar
  18. 18.
    C. Portet, M.Á. Lillo-Ródenas, A. Linares-Solano, Y. Gogotsi, Phys. Chem. Chem. Phys. 11, 4943 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Sevilla, R. Foulston, R. Mokay, Energy Environ. Sci. 3, 223 (2010)CrossRefGoogle Scholar
  20. 20.
    K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, J. Machnikowski, Electrochim. Acta 49, 515 (2004)CrossRefGoogle Scholar
  21. 21.
    M.J. Bleda-Martínez, J.A. Maciá-Agulló, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós, A. Linares-Solano, Carbon, 43, 2677 (2005)CrossRefGoogle Scholar
  22. 22.
    S. Osswald, C. Portet, Y. Gogotsi, G. Laudisio, P.J. Singer, E.J. Fischer et al., J. Solid State Chem. 182, 1733 (2009)CrossRefGoogle Scholar
  23. 23.
    M. Kormann, N. Popovska, Microporous Mesoporous Mater. 130, 167 (2010)CrossRefGoogle Scholar
  24. 24.
    E. Tee, I. Tallo, H. Kurig, T. Thomberg, A. Jänes, E. Lust, Electrochim. Acta 161, 364 (2015)CrossRefGoogle Scholar
  25. 25.
    H. Marsh, F. Rodriguez-Reinoso, Activated Carbon (Elsevier, New York, 2006)Google Scholar
  26. 26.
    H. Fałtynowicz, J. Kaczmarczyk, M. Kułażyński, Open Chem. 13, 1150 (2015)Google Scholar
  27. 27.
    M. Molina-Sabio, M.T. Gonzalez, F. Rodriguez-Reinoso, A. Sepúlveda-Escribano, Carbon, 34, 505 (1996)CrossRefGoogle Scholar
  28. 28.
    A. Jänes, H. Kurig, E. Lust, Carbon 45, 1226 (2007)CrossRefGoogle Scholar
  29. 29.
    J. Leis, M. Arulepp, A. Perkson, PCT patent WO2004/094307 (2004)Google Scholar
  30. 30.
    R. Arriagada, R. García, M. Molina-Sabio, F. Rodriguez-Reinoso, Microporous Mater. 8, 123 (1997)CrossRefGoogle Scholar
  31. 31.
    M. Wang, H. Zhang, Q. Wang, C. Qu, X. Li, H. Zhang, ACS Appl. Mater. Interfaces 7, 3590 (2015)CrossRefGoogle Scholar
  32. 32.
    E.I. Gusachenko, L.N. Stesik, Russ. J. Phys. Chem. B 5, 220 (2011)CrossRefGoogle Scholar
  33. 33.
    H. Fredriksson, Nanostructures of graphite and amorphous carbon: fabrication and propeties, PhD Thesis, Göteborg, Sweden, (2009)Google Scholar
  34. 34.
    S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)CrossRefGoogle Scholar
  35. 35.
    M. Thommes, K.A. Cychosz, A.V. Neimark, Advanced Physical Adsorption Characterization of Nanoporous Carbons, ed. by J.M.D. Tascon. Novel Carbon Adsorbents (Elsevier, New York, 2012), pp. 107–145CrossRefGoogle Scholar
  36. 36.
    A.V. Neimark, Y. Lin, P.I. Ravikovitch, M. Thommes, Carbon 47, 1617 (2009)CrossRefGoogle Scholar
  37. 37.
    J.M. Caguiat, D.W. Kirk, C.Q. Jia, Carbon 72, 47 (2014)CrossRefGoogle Scholar
  38. 38.
    M. Käärik, M. Arulepp, M. Karelson, J. Leis, Carbon 46, 1579 (2008)CrossRefGoogle Scholar
  39. 39.
    A. Jänes, T. Thomberg, E. Lust, Carbon 45, 2717 (2007)CrossRefGoogle Scholar
  40. 40.
    A.C. Ferrari, Sol. State Comm. 143, 47 (2007)CrossRefGoogle Scholar
  41. 41.
    Y. Sato, M. Kamo, N. Setaka, Carbon 16, 279 (1978)CrossRefGoogle Scholar
  42. 42.
    Y.-J. Lee, J. Nucl. Mater. 325, 174 (2004)CrossRefGoogle Scholar
  43. 43.
    A.P. Terzyk, A. Colloids, Surfaces, Physicochem. Eng. Aspects 177, 23 (2001)CrossRefGoogle Scholar
  44. 44.
    L. Teng, T. Tang, J. Zhejiang Univ. Sci. A 9, 720 (2008)CrossRefGoogle Scholar
  45. 45.
    V. Tucureanu, A. Matei, A.M. Avram, Crit. Rev. Analyt. Chem. 46, 502 (2016)CrossRefGoogle Scholar
  46. 46.
    J.A. Menendez, J. Phillips, B. Xia, L.R. Radovic, Langmuir 12, 4404 (1996)CrossRefGoogle Scholar
  47. 47.
    B. Dyatkina, Y. Gogotsi, Faraday Discuss. 172, 139 (2014)Google Scholar
  48. 48.
    P. Brender, R. Gadiou, J.-C. Rietsch, P. Fioux, J. Dentzer, A. Ponche et al., Anal. Chem. 84, 2147 (2012)CrossRefGoogle Scholar
  49. 49.
    A. Mezzi, S. Kaciulis, Surf. Interface Anal. 42, 1082 (2010)CrossRefGoogle Scholar
  50. 50.
    J.T. Titantah, D. Lamoen, Carbon 43, 1311 (2005)CrossRefGoogle Scholar
  51. 51.
    S. Urbonaite, S. Wachtmeister, C. Mirguet, E. Coronel, W.Y. Zou, S. Csillag et al., Carbon 45, 2047 (2007)CrossRefGoogle Scholar
  52. 52.
    B. Krüner, P. Srimuk, S. Fleischmann, M. Zeiger, A. Schreiber, M. Aslan et al., Carbon 117, 46 (2017)CrossRefGoogle Scholar
  53. 53.
    R. Haerle, E. Riedo, A. Pasquarello, A. Baldereschi, Phys. Rev. B 65, 045101 (2001)CrossRefGoogle Scholar
  54. 54.
    J. Leis, A. Perkson, M. Arulepp, P. Nigu, G. Svensson, Carbon 40, 1559 (2002)CrossRefGoogle Scholar
  55. 55.
    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015)CrossRefGoogle Scholar
  56. 56.
    S. Osswald, J. Chmiola, Y. Gogotsi, Carbon 50, 4880 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Maike Käärik
    • 1
  • Mati Arulepp
    • 3
  • Mati Kook
    • 2
  • Uno Mäeorg
    • 1
  • Jekaterina Kozlova
    • 2
  • Väino Sammelselg
    • 2
  • Anti Perkson
    • 3
  • Jaan Leis
    • 1
    • 3
  1. 1.Institute of ChemistryUniversity of TartuTartuEstonia
  2. 2.Institute of PhysicsUniversity of TartuTartuEstonia
  3. 3.OÜ Skeleton TechnologiesLubjaEstonia

Personalised recommendations