Abstract
Hydrodeoxygenation (HDO) of bio-oils derived from the pyrolysis of woody biomass is required to improve the stability and heating value of the liquid hydrocarbon products. Since pyrolysis produces bio-oils having up to 30 vol% water, HDO catalysts must not only be active and selective, but also stable under hydrothermal conditions associated with HDO upgrading. We investigated the effect of carbon coatings on a variety of silica, mixed zirconia-silica oxides and alumina. Surface area and porosity changes from exposure to controlled steaming conditions were used to evaluate the effectiveness of carbon coating on support stability. Systematic studies of the effects of the composition and structure of the carbon precursor, the inclusion of a zirconium modifier, the carbon loading and carbonization conditions led to the development of highly stable carbon modified zirconium silicate and mesoporous alumina supports that substantially maintain pore size distribution and surface area after steaming at 493 K with 23 bar of steam pressure.
This is a preview of subscription content, access via your institution.




References
A. Oasmaa, S. Czernik, Energy Fuels 13, 914–921 (1999)
E. Furimsky, Appl. Catal. A 199, 147–190 (2000)
S. Czernik, A.V. Bridgwater, Energy Fuels 18, 590–598 (2004)
A. Corma, S. Iborra, A. Velty, Chem. Rev. 107, 2411–2502 (2007)
J.N. Chheda, G.W. Huber, J.A. Dumesic, Angew. Chem. Int. Ed. 46, 7164–7183 (2007)
R.M. Ravenelle, F. Schussler, A. D’Amico, N. Danilina, J.A. van Bokhoven, J.A. Lercher, C.W. Jones, C. Sievers, J. Phys. Chem. C 114, 19582–19595 (2010)
R.M. Ravenelle, J.R. Copeland, W.G. Kim, J.C. Crittenden, C. Sievers, ACS Catal. 1, 552–561 (2011)
A.H. Zacher, M.V. Olarte, D.M. Santosa, D.C. Elliott, S.B. Jones, Green Chem. 16, 491–515 (2014)
R. Ryoo, J.M. Kim, C.H. Shin, L.Y. Lee, in Progress in Zeolite and Microporous Materials, vol. 105, ed. by H. Chon, S.K. Ihm, Y.S. Uh, pp. 45–52 (1997)
K. Cassiers, T. Linssen, V. Meynen, P. Van der Voort, P. Cool, E.F. Vansant, Chem. Commun. 10, 1178–1179 (2003)
K. Cassiers, T. Linssen, M. Mathieu, M. Benjelloun, K. Schrijnemakers, P. Van Der Voort, P. Cool, E.F. Vansant, Chem. Mater. 14, 2317–2324 (2002)
T. Linssen, K. Cassiers, P. Cool, E.F. Vansant, Adv. Colloid Interface Sci. 103, 121–147 (2003)
F.Q. Zhang, Y. Yan, H.F. Yang, Y. Meng, C.Z. Yu, B. Tu, D.Y. Zhao, J. Phys. Chem. B 109, 8723–8732 (2005)
V. Boffa, G. Magnacca, L.B. Jorgensen, A. Wehner, A. Dornhofer, Y.Z. Yue, Microporous Mesoporous Mater. 179, 242–249 (2013)
A. Galarneau, M. Nader, F. Guenneau, F. Di Renzo, A. Gedeon, J. Phys. Chem. C 111, 8268–8277 (2007)
R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979)
R.A. Pollock, G.Y. Gor, B.R. Walsh, J. Fry, I.T. Ghampson, Y.B. Melnichenko, H. Kaiser, W.J. DeSisto, M.C. Wheeler, B.G. Frederick, J. Phys. Chem. C 116, 22802–22814 (2012)
M.W. Hahn, J.R. Copeland, A.H. van Pelt, C. Sievers, Chemsuschem 6, 2304–2315 (2013)
S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 122, 10712–10713 (2000)
S.H. Joo, S. Jun, R. Ryoo, Microporous Mesoporous Mater. 44, 153–158 (2001)
R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Adv. Mater. 13, 677–681 (2001)
H.N. Pham, A.E. Anderson, R.L. Johnson, K. Schmidt-Rohr, A.K. Datye, Angew. Chem. Int. Ed. 51, 13163–13167 (2012)
M.A. Smith, R.F. Lobo, Microporous Mesoporous Mater. 92, 81–93 (2006)
D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024–6036 (1998)
Q. Yuan, A.-X. Yin, C. Luo, L.-D. Sun, Y.-W. Zhang, W.-T. Duan, H.-C. Liu, C.-H. Yan, J. Am. Chem. Soc. 130, 3465–3472 (2008)
D. Margolese, J.A. Melero, S.C. Christiansen, B.F. Chmelka, G.D. Stucky, Chem. Mater. 12, 2448–2459 (2000)
A.L. Jongerius, J.R. Copeland, G.S. Foo, J.P. Hofmann, P.C.A. Bruijnincx, C. Sievers, B.M. Weckhuysen, ACS Catal. 3, 464–473 (2013)
K. Wefers, C. Misra, Alcoa Technical Papers (1987), pp. 1–92
R. Rinaldi, F.Y. Fujiwara, U. Schuchardt, Appl. Catal. A 315, 44–51 (2006)
J.E. Shelby (ed.), Introduction to Glass Science and Technology, 2nd edn. (Royal Society of Chemistry, Cambridge, 2005)
Acknowledgements
Funding for this work was partially provided by US Department of Energy (DOE) through the Biomass Resource and Development Initiative (BRDI) program (Award #2012-10008-20271, CRIS#0231089). The work was also funded by the Undergraduate Research Fellowship Grant from Villanova University. Assistance with the collection of nitrogen adsorption data was kindly provided by Benaiah Anabaraonye. The authors also thank the PQ Corporation (Conshohocken, PA) for providing Zr-treated silicas.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Chung, S., Liu, Q., Joshi, U.A. et al. Using polyfurfuryl alcohol to improve the hydrothermal stability of mesoporous oxides for reactions in the aqueous phase. J Porous Mater 25, 407–414 (2018). https://doi.org/10.1007/s10934-017-0451-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10934-017-0451-9
Keywords
- Catalyst support
- Hydrothermal stability
- Mesoporous silica
- Carbon coating
- Zirconia