Skip to main content

Preparation, characterization and excellent catalytic activity of Cu/SBA-15 nanomaterials

Abstract

Cu/SBA-15 nanomaterials were synthesized by means of a simple impregnation reduction method using excess NaBH4 as reducing agent. The morphology and structure of synthesized materials were characterized by powder X-ray diffraction, N2 adsorption–desorption isothermal and transmission electron microscope. The catalytic activity of Cu/SBA-15 toward the reducing reaction of p-nitrophenol was investigated using UV–Vis spectroscope as monitor and discussed further from the viewpoints of reactive kinetics and thermodynamics. Results show that the ordered structure of mesoporous materials was still remained as Cu nanoparticles incorporated into SBA-15, and that the specific surface areas and pore diameters of materials enlarged. Cu/SBA-15 as catalytic exhibited an excellent catalytic activity and over 99.0% of p-nitrophenol was reduced into p-aminophenol. The time to complete reaction shortened as increasing of reaction temperature as well as Cu nanoparticles loaded amount. The activity energy of reduction reaction was 64.09 kJ mol−1 and the rate constants increased as rise of the reaction temperatures from the pseudo-first-order reaction model. The thermodynamic analysis reveals that the activity parameters of reaction were as follows: enthalpy change 61.65 kJ mol−1, entropy change −87.68 J mol−1 K−1, and Gibbs free energy change increased slightly as increasing the reaction temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    C.J. Ogugbue, T. Sawidis, Biotechnol. Res. Int. 1 (2011)

  2. 2.

    F.M.D. Chequer, G.A.R. de Oliveira, E.R.A. Ferraz, J.C. Cardoso, M.V.B. Zanoni, D.P. de Oliveira, Textile dyes: dyeing process and environmental impact, M. Günay, Eco-friendly textile dyeing and finishing, INTECH Publishers, Rijeka, pp. 151–176 (2013)

    Google Scholar 

  3. 3.

    J.R. Chiou, B.H. Lai, K.C. Hsu, D.H. Chen, J. Hazard. Mater. 248, 394 (2013)

    Article  Google Scholar 

  4. 4.

    D. Shahidi, R. Roy, A. Azzouz, Appl. Catal. B 174–175, 277 (2015)

    Article  Google Scholar 

  5. 5.

    H. Shen, T. Xue, Y. Wang, G. Cao, Y. Lu, G. Fang, Mater. Bes. Bull. 84, 15 (2016)

    CAS  Article  Google Scholar 

  6. 6.

    K. Shimizu, K. Sawabe, A. Satsuma, Catal. Sci. Technol. 1, 331 (2011)

    CAS  Article  Google Scholar 

  7. 7.

    Y. Chi, L. Zhao, Q. Yuan, Y. Li, J. Zhang, J. Tu, N. Li, X. Li, Chem. Eng. J. 195–196, 254 (2012)

    Article  Google Scholar 

  8. 8.

    J. Park, H. Kim, J. Park, Int. J. Environ. Sci. Devel. 3, 81 (2012)

    CAS  Article  Google Scholar 

  9. 9.

    R. Saad, S. Thiboutot, G. Ampleman, D. Wang, J. Hawari, Chemosphere 81, 853 (2010)

    CAS  Article  Google Scholar 

  10. 10.

    S. Paganelli, O. Piccolo, F. Baldi, R. Tassini, M. Gallo, G. La Sorella, Appl. Catal. A 451, 144 (2013)

    CAS  Article  Google Scholar 

  11. 11.

    Z. Dong, X. Le, X. Li, W. Zhang, C. Dong, J. Ma, Appl. Catal. B 158–159, 129 (2014)

    Article  Google Scholar 

  12. 12.

    P.J.C. Hausoul, S.D. Tefera, J. Blekxtoon, P.C.A. Bruijnincx, R.J.M.K. Gebbink, B.M. Weckhuysen, Catal. Sci. Technol. 3, 1215 (2013)

    CAS  Article  Google Scholar 

  13. 13.

    S. Sciré, L.F. Liotta, Appl. Catal. B 125, 222 (2012)

    Article  Google Scholar 

  14. 14.

    J.W. Zheng, H.Q. Lin, Y.N. Wang, X.L. Zheng, X.P. Duan, Y.Z. Yuan, J. Catal. 297, 110 (2013)

    CAS  Article  Google Scholar 

  15. 15.

    D. Chen, Z. Qu, Y. Sun, K. Gao, Y. Wang, Appl. Catal. B 142–143, 838 (2013)

    Article  Google Scholar 

  16. 16.

    S. Gao, Z. Zhang, K. Liu, B. Dong, Appl. Catal. B 188, 245 (2016)

    CAS  Article  Google Scholar 

  17. 17.

    Z. Dong, X. Le, C. Dong, W. Zhang, X. Li, J. Ma, Appl. Catal. B 162, 372 (2015)

    CAS  Article  Google Scholar 

  18. 18.

    X. Qin, W. Lu, Y. Luo, G. Chang, A.M. Asiri, A.O. Al-Youbi, X. Sun, J. Nanosci. Nanotechnol. 12, 2983 (2012)

    CAS  Article  Google Scholar 

  19. 19.

    L. Hu, F. Yang, W. Lu, Y. Hao, H. Yuan, Appl. Catal. B 134–135, 7 (2013)

    Article  Google Scholar 

  20. 20.

    H. Wang, J. Shen, Y. Li, Z. Wei, G. Cao, Z. Gai, K. Hong, P. Banerjee, S. Zhou, ACS Appl. Mater. Inter. 5, 9446 (2013)

    CAS  Article  Google Scholar 

  21. 21.

    S. Arora, P. Kapoor, M.L. Singla, React. Kinet. Mech. Catal. 99, 157 (2010)

    CAS  Google Scholar 

  22. 22.

    A. Chinnappan, A.H. Tamboli, W.J. Chung, H. Kim, Chem. Eng. J. 285, 554 (2016)

    CAS  Article  Google Scholar 

  23. 23.

    S. Saha, A. Pal, S. Kundu, S. Basu, T. Pal, Langmuir 26, 2885 (2010)

    CAS  Article  Google Scholar 

  24. 24.

    S. Panigrahi, S. Basu, S. Praharaj, S. Pande, S. Jana, A. Pal, S.K. Ghosh, T. Pal, J. Phys. Chem. C 111, 4596 (2007)

    CAS  Article  Google Scholar 

  25. 25.

    J.F. Corbett, Dyes Pigm. 41, 127 (1999)

    CAS  Article  Google Scholar 

  26. 26.

    B.K. Ghosh, S. Hazra, B. Naik, N.N. Ghosh, Powder Technol. 269, 371 (2015)

    CAS  Article  Google Scholar 

  27. 27.

    C.V. Rode, M.J. Vaidya, R.V. Chaudhari, Org. Process Res. Dev. 3, 465 (1999)

    CAS  Article  Google Scholar 

  28. 28.

    J. Wang, H. Ge, W. Bao, Mater. Lett. 145, 312 (2015)

    CAS  Article  Google Scholar 

  29. 29.

    J. Wang, G. Tian, Z. Li, X. Ji, W. Bao, Mater. Lett. 162, 110 (2016)

    CAS  Article  Google Scholar 

  30. 30.

    R.L. Oliveira, M. Shakeri, J.D. Meeldijk, K.P. De Jong, P.E. De Jongh, Micro. Meso. Mater. 201, 234 (2015)

    CAS  Article  Google Scholar 

  31. 31.

    S. Lin, L. Shi, T. Yu, X. Li, X. Yi, A. Zheng, Micro. Meso. Mater. 207, 111 (2015)

    CAS  Article  Google Scholar 

  32. 32.

    J. Zhu, X. Xie, S.A.C. Carabineiro, P.B. Tavares, J.L. Figueiredo, R. SchomÓ“cker, A. Thomas, Energy Environ. Sci. 4, 2020 (2011)

    CAS  Article  Google Scholar 

  33. 33.

    B. Naik, S. Hazra, V.S. Prasad, N.N. Ghosh, Catal. Commun. 12, 1104 (2011)

    CAS  Article  Google Scholar 

  34. 34.

    B. Naik, S. Hazra, P. Muktesh, V.S. Prasad, N.N. Ghosh, Sci. Adv. Mater. 3, 1025 (2011)

    CAS  Article  Google Scholar 

  35. 35.

    Y. Lu, Y. Mei, M. Drechsler, M. Ballauff, Angew. Chem. Int. Ed. 45, 813 (2006)

    CAS  Article  Google Scholar 

  36. 36.

    Y. Mei, Y. Lu, F. Polzer, M. Ballauff, Chem. Mater. 19, 1062 (2007)

    CAS  Article  Google Scholar 

  37. 37.

    A. Corma, P. Concepción, P. Serna, Angew. Chem. 119, 7404 (2007)

    Article  Google Scholar 

  38. 38.

    S. Gu, Y. Lu, J. Kaiser, M. Albrecht, M. Ballauff, Phys. Chem. Chem. Phys. 17, 28137 (2015)

    CAS  Article  Google Scholar 

  39. 39.

    X. Chen, M. Murugananthan, Y. Zhang, Chem. Eng. J. 283, 1357 (2016)

    CAS  Article  Google Scholar 

  40. 40.

    P. Guo, L. Tang, J. Tang, G. Zeng, B. Huang, H. Dong, Y. Zhang, Y. Zhou, Y. Deng, L. Ma, S. Tan, J. Colloid Inter. Sci. 469, 78 (2016)

    CAS  Article  Google Scholar 

  41. 41.

    P.H.K. Charan, G.R. Rao, Micro. Meso. Mater. 200, 101 (2014)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Authors particularly thank the financial support of the National Natural Science Foundation of China (Project NO: 51372161, 21503125).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Junhong Wang or Weiren Bao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Shao, X., Tian, G. et al. Preparation, characterization and excellent catalytic activity of Cu/SBA-15 nanomaterials. J Porous Mater 25, 207–214 (2018). https://doi.org/10.1007/s10934-017-0434-x

Download citation

Keywords

  • Cu/SBA-15
  • Pollution control
  • Catalytic activation
  • Thermodynamic properties