Advertisement

Journal of Porous Materials

, Volume 24, Issue 6, pp 1565–1574 | Cite as

Synthesis of benzxazine-based nitrogen-doped mesoporous carbon spheres for methyl orange dye adsorption

  • Yuchun Jiao
  • Li XuEmail author
  • Huiling Sun
  • Yijie Deng
  • Tao Zhang
  • Guoji Liu
Article

Abstract

In this work, nitrogen-doped mesoporous carbon spheres (NMCS) were synthesized through a hard template method by using benzoxazine resin as precursor and ordered mesoporous silica spheres as template. The obtained N-doped mesoporous carbons were amorphous spherical nanoparticles with worm-like mesoporous channels and possessed high surface area of 789 m2/g, large pore volume of 0.49 cm3/g and high nitrogen content of 3.50 wt.%. The adsorption capacity of methyl orange (MO) by NMCS could attain 352.1 mg/g at an optimal condition, while the adsorption capacity of MO by non-doped mesoporous carbon spheres (MCS) was 251.9 mg/g at the same condition. The adsorption process fitted the pseudo-second-order kinetic model and the Langmuir isotherm well. Thermodynamic analysis indicated that the removal of MO by NMCS was spontaneous, endothermic and feasible process. In addition, the adsorption capacity of regenerated adsorbent was 89.04% of the initial level after four regeneration cycles.

Keywords

Benzoxazine resin Nitrogen-doped mesoporous carbon spheres Methyl orange dye Adsorption 

Supplementary material

10934_2017_396_MOESM1_ESM.doc (4.7 mb)
The porous texture parameters of NMCS and MCS by nitrogen adsorption; The results of element analysis for NMCS; Comparison of the maximum adsorption capacities for MO of MCS, NMCS and reported adsorbents; Fabrication procedure of mesoporous silica spheres; Synthesis procedure for NMCS and MCS; XRD pattern of NMCS; EDS spectrum and mapping images of NMCS; Basic and acidic structures of MO; (a) The adsorption isotherms on MO adsorption of NMCS at 25, 35 and 45 °C, (b) Langmuir plots of the isotherms and (c) Freundlich plots of the isotherms; Adsorption isotherms for MO adsorption on NMCS and MCS at 318 K; (a) pseudo-first-order kinetics plots with C0 (40 mg/L), (b) pseudo-second-order kinetics plots with C0 (40 mg/L), (c) pseudo-first-order kinetics plots with C0 (120 mg/L) and (d) pseudo-second-order kinetics plots with C0 (120 mg/L) on MO adsorption of NMCS at 25, 35 and 45 °C; Intraparticle diffusion kinetics plots of MO adsorption on NMCS at 25, 35 and 45 °C with (a) C0 (40 mg/L) and (b) C0 (120 mg/L); SEM images of NMCS before and after adsorption of MO (NMCS and NMCS-MO); EDS spectrum and mapping images of NMCS-MO. (DOC 4859 KB)

References

  1. 1.
    V. Ravat, I. Nongwe, N. J. Coville, Micropor. Mesopor. Mater. 225, 224–231 (2016)CrossRefGoogle Scholar
  2. 2.
    B. Wang, T. P. Ang, A. Borgna, Micropor. Mesopor. Mater. 158, 99–107 (2012)CrossRefGoogle Scholar
  3. 3.
    J. Yu, M. Guo, F. Muhammad, A. Wang, G. Yu, H. Ma, G. Zhu. Micropor. Mesopor. Mater. 190, 117–127 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Xie, Y. Xia, J. Liang, L. Chen, X. Guo, Micropor. Mesopor. Mater. 197, 237–243 (2014)CrossRefGoogle Scholar
  5. 5.
    Z. Wu, P.A. Webley, D.Y. Zhao, Langmuir 26, 10277–10286 (2010)CrossRefGoogle Scholar
  6. 6.
    J.W. Fan, X.Q. Ran, Y. Ren, C. Wang, J.P. Yang, W. Teng, L.Y. Zou, Y. Sun, B. Lu, Y.H. Deng, D.Y. Zhao, Langmuir 32, 9922–9929 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Liu, N. P. Wickramaratne, S. Z. Qiao, M. Jaroniec. Nature Mater. 14(8), 763–774 (2015)Google Scholar
  8. 8.
    L.M. Zhang, Z.B. Wang, J.J. Zhang, X.L. Sui, L. Zhao, D.M. Gu, Carbon 93, 1050–1058 (2015)CrossRefGoogle Scholar
  9. 9.
    A. Vinu, K. Ariga, T. Mori, T. Nakanishi, S. Hishita, D. Golberg, Y. Bando, Adv. Mater. 17, 1648–1652 (2005)CrossRefGoogle Scholar
  10. 10.
    C.C. Hwang, Z. Jin, W. Lu, Z. Sun, L.B. Alemany, J.R. Lomeda, J.M. Tour, ACS Appl. Mater. Interfaces 3, 4782–4786 (2011)CrossRefGoogle Scholar
  11. 11.
    J. Goscianska, M. Marciniak, R. Pietrzak, Chem. Eng. J. 247, 258–264 (2014)CrossRefGoogle Scholar
  12. 12.
    Z. Li, W. Yan, S. Dai, Langmuir 21, 11999–12006 (2005)CrossRefGoogle Scholar
  13. 13.
    Y.D. Xia, R. Mokaya, J. Phys. Chem. C 111, 10035–10039 (2007)CrossRefGoogle Scholar
  14. 14.
    Y. Huang, F. Yang, Z. Xu, J. Shen, J. Colloid Interface Sci. 363, 193–198 (2011)CrossRefGoogle Scholar
  15. 15.
    M. Sevilla, L.H. Yu, L. Zhao, C.O. Ania, M.M. Titiricic, ACS Sustain. Chem. Eng. 2, 1049–1055 (2014)CrossRefGoogle Scholar
  16. 16.
    M. Sevilla, L. H. Yu, T. P. Fellinger, A. B. Fuertes, M. M. Titirici. RSC Adv. 3, 9904–9910 (2013)CrossRefGoogle Scholar
  17. 17.
    H.M. Ma, Y. Liu, Y.X. Liu, J.J. Qiu, C.M. Liu, RSC Adv. 5, 102441–102447 (2015)CrossRefGoogle Scholar
  18. 18.
    J. Wei, D. Zhou, Z. Sun, Y. Deng, Y. Xia, D. Zhao, Adv. Funct. Mater. 23, 2322–2328 (2013)CrossRefGoogle Scholar
  19. 19.
    K. Wan, G. Long, M. Liu, L. Du, Z. Liang, P. Tsiakaras, Appl. Catal. B 165, 566–571 (2015)CrossRefGoogle Scholar
  20. 20.
    J. Yu, M. Guo, F. Muhammad, A. Wang, F. Zhang, Q. Li, G. Zhu, Carbon 69, 502–514 (2014)CrossRefGoogle Scholar
  21. 21.
    X.Q. Wang, Y. Zhang, W. Luo, A.A. Elzatahry, X.W. Cheng, A. Alghamdi, A.M. Abdullah, Y.H. Deng, D.Y. Zhao, Chem. Mater. 28, 2356–2362 (2016)CrossRefGoogle Scholar
  22. 22.
    J.W. Fan, D.D. Li, W. Teng, J.P. Yang, Y. Liu, L.L. Liu, A.A. Elzatahry, A. Alghamdi, Y.H. Deng, G.M. Li, W.X. Zhang, D.Y. Zhao, J. Mater. Chem. A 4, 3850–3857 (2016)CrossRefGoogle Scholar
  23. 23.
    K. Yano, Y. Fukushima, J. Mater. Chem. 14, 1579–1584 (2004)CrossRefGoogle Scholar
  24. 24.
    Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang, Z. Li, C. Yu, B. Tu, D. Zhao, Angew. Chem. 117, 7215–7221 (2005)CrossRefGoogle Scholar
  25. 25.
    R. Wang, P. Wang, X. Yan, J. Lang, C. Peng, Q. Xue, Acs Appl. Mater. Interfaces 4, 5800–5806 (2012)CrossRefGoogle Scholar
  26. 26.
    Z. Teng, Y. Han, J. Li, F. Yan, W. Yang, Micropor. Mesopor. Mater. 127 67–72 (2010)CrossRefGoogle Scholar
  27. 27.
    J. Cai, J. Qi, C. Yang, X. Zhao, Acs Appl. Mater. Interfaces 6, 3703–3711 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Zhang, Ai, K. Ueno, Z. Chen, K. Dokko, M. Watanabe, ChemSusChem 8, 1608–1617 (2015)CrossRefGoogle Scholar
  29. 29.
    Y. Yao, B. He, F. Xu, X. Chen, Chem. Eng. J. 170, 82–89 (2011)CrossRefGoogle Scholar
  30. 30.
    V. K. Gupta, B. Gupta, A. Rastogi, S. Agarwal, A. Nayak, Hazard. Mater. 186 (2011) 891–901.CrossRefGoogle Scholar
  31. 31.
    Y. Bulut, N. Gözübenli, H. Aydın, J. Hazard. Mater. 144, 300–306 (2007)CrossRefGoogle Scholar
  32. 32.
    A.A. Jalil, S. Triwahyono, S.H. Adam, N.D. Rahim, M.A.A. Aziz, N.H.H. Hairom, N.A.M. Razali, M.A.Z. Abidin, M.K.A. Mohamadiah, J. Hazard. Mater. 181, 755–762 (2010)CrossRefGoogle Scholar
  33. 33.
    W. Cheah, S. Hosseini, M.A. Khan, T.G. Chuah, T.S.Y. Choong, Chem. Eng. J. 215–216, 747–754 (2013)CrossRefGoogle Scholar
  34. 34.
    O.G. Apul, T. Shao, S. Zhang, T. Karanfil, Environ. Toxicol. Chem. 31, 73–78 (2012)CrossRefGoogle Scholar
  35. 35.
    G.L. Perlovich, S.V. Kurkov, A. Bauer-Brandl, Eur. J. Pharm. Sci. 19, 423–432 (2003)CrossRefGoogle Scholar
  36. 36.
    Q. Zhang, Y. Yang, C. Cao, L. Cheng, Y. Shi, W. Yang, Y. Hu, J. Chem. Thermodyn. 80, 7–12 (2015)CrossRefGoogle Scholar
  37. 37.
    A. Khaled, A.E. Nemr, A. El-Sikaily, O. Abdelwahab, J. Hazard. Mater. 165, 100–110 (2009)CrossRefGoogle Scholar
  38. 38.
    M.A. Al-Ghouti, M.A.M. Khraisheh, M.N.M. Ahmad, S. Allen, J. Hazard. Mater. 165, 589–598 (2009)CrossRefGoogle Scholar
  39. 39.
    M. Ghaedi, A. Hassanzadeh, S.N. Kokhdan, J. Chem. Eng. Data 56, 2511–2520 (2011)CrossRefGoogle Scholar
  40. 40.
    S. Rengaraj, Y. Kim, C.K. Joo, J. Yi, J. Colloid Interface Sci. 273, 14–21 (2004)CrossRefGoogle Scholar
  41. 41.
    M. Dogan, H. Abak, M. Alkan, J. Hazard. Mater. 164, 172–181 (2009)CrossRefGoogle Scholar
  42. 42.
    F.M. Machado, C.P. Bergmann, T.H.M. Fernandes, E.C. Lima, B. Royer, T. Calvete, S.B. Fagan, J. Hazard. Mater. 192, 1122–1131 (2011)CrossRefGoogle Scholar
  43. 43.
    N.F. Cardoso, R.B. Pinto, E.C. Lima, T. Calvete, C.V. Amavisca, B. Royer, M.L. Cunha, T.H.M. Fernandes, S.I. Pinto, Desalination 269, 92–103 (2011)CrossRefGoogle Scholar
  44. 44.
    J. Ma, F. Yu, L. Zhou, L. Jin, M. Yang, J. Luan, Y. Tang, H. Fan, Z. Yuan, J. Chen, Acs Appl. Mater. Interfaces 4, 5749–5760 (2012)CrossRefGoogle Scholar
  45. 45.
    H.Y. Zhu, R. Jiang, L. Xiao, G.M. Zeng, Bioresour. Technol 101, 5063–5069 (2010)CrossRefGoogle Scholar
  46. 46.
    P.R. Chang, P. Zheng, B. Liu, D.P. Anderson, J. Yu, X. Ma, J. Hazard. Mater. 186, 2144–2150 (2011)CrossRefGoogle Scholar
  47. 47.
    M.H. Do, N.H. Phan, T.D. Nguyen, T.T.S. Pham, V.K. Nguyen, T.T.T. Vu, T.K.P. Nguyen, Chemosphere 85, 1269–1276 (2011)CrossRefGoogle Scholar
  48. 48.
    Á. Sánchez-Sánchez, F. Suárez-García, A. Martínez-Alonso, J.M.D. Tascón, J. Colloid Interface Sci. 450, 91–100 (2015)CrossRefGoogle Scholar
  49. 49.
    H. Chen, J. Zhao, J. Wu, G. Dai, J. Hazard. Mater. 192, 246–254 (2011)Google Scholar
  50. 50.
    E. Haque, J.E. Lee, I.T. Jang, Y.K. Hwang, J.S. Chang, J. Jegal, S.H. Jhung, J. Hazard. Mater. 181, 535–542 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yuchun Jiao
    • 1
  • Li Xu
    • 1
    Email author
  • Huiling Sun
    • 1
  • Yijie Deng
    • 1
  • Tao Zhang
    • 1
  • Guoji Liu
    • 1
  1. 1.School of Chemical Engineering and EnergyZhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations