Journal of Porous Materials

, Volume 24, Issue 6, pp 1481–1496 | Cite as

Fe3O4@SiO2@TiO2-OSO3H: an efficient hierarchical nanocatalyst for the organic quinazolines syntheses

  • Ali MalekiEmail author
  • Tooraj Kari
  • Morteza Aghaei


A sulfonic acid functionalized titanium dioxide quasi-superparamagnetic nanocatalyst Fe3O4@SiO2@TiO2-OSO3H with average size of 61 nm and semispherical shape with surface area about 97 m2 g−1 with saturation magnetization 17.7 emu g−1 and the coercivity 9.84 Oe was successfully synthesized. The structure and morphology of the nanocatalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy, X-ray diffraction pattern, transmission electron microscopy, field-emission scanning electron microscopy, vibrating sample magnetometer and Brunauer–Emmett–Teller surface area analysis. The catalytic usage of the nanocatalyst was exemplified in synthesis of 2,3-dihydroquinazolin-4(1H)-one and spiroquinazolin-4(3H)-one derivatives in deep eutectic solvents (DESs) based on choline chloride and urea. We suggest that the synergistic effects in catalytic activities of titanium dioxide, organic acid and the CO2 capture property of DES are the main reasons for the improvement of catalytic activity. The synthesized spiroquinazolinones and dihydroquinazolinones derivatives were characterized by FT-IR, 1H and 13C nuclear magnetic resonance spectroscopy. The magnetic nanocatalyst exhibit high catalytic activity and can be simply separated from reaction media by an external magnet in a few seconds and could be reused for six cycles without significant loos in activity, which indicates the good immobilization of sulfonic acid on the magnetic titanium dioxide support. Furthermore, the solvent which has been used in this work can be readily isolated and reused for several times.


Magnetic nanocatalyst Sulfonated titanium dioxide Spiroquinazoline-4(3H)-ones 2,3-Dihydroquinazolin-4(1H)-ones Deep eutectic solvent 



The authors gratefully acknowledge the financial support from the Research Council of the Iran University of Science and Technology.


  1. 1.
    P.T. Anastas, J.C. Warner, Green Chem. Theory Pract. 29–56 (1998)Google Scholar
  2. 2.
    J.E. Mondloch, E. Bayram, R.G. Finke, J. Mol. Catal. A. 355, 1–38 (2012)CrossRefGoogle Scholar
  3. 3.
    H. Goesmann, C. Feldmann, Angew. Chem. Int. Ed. 49, 1362–1395 (2010)CrossRefGoogle Scholar
  4. 4.
    G.A. Somorjai, H. Frei, J.Y. Park, J. Am. Chem. Soc. 131, 16589–16605 (2009)CrossRefGoogle Scholar
  5. 5.
    O. Schätz, W.J. Reiser, Stark. Chem. Eur. J 16, 8950–8967 (2010)CrossRefGoogle Scholar
  6. 6.
    D. Astruc, Nanoparticles and Catalysis, (Wiley, New York, 2008)Google Scholar
  7. 7.
    E. Roduner, Chem. Soc. Rev 35, 583–592 (2006)CrossRefGoogle Scholar
  8. 8.
    D. Astruc, F. Lu, J.R. Aranzaes, Angew. Chem. Int. Ed. 44, 7852–7872 (2005)CrossRefGoogle Scholar
  9. 9.
    H.P. Boehm, Discuss. Faraday Soc 52, 264–275 (1971)CrossRefGoogle Scholar
  10. 10.
    H. Kita, N. Henmi, K. Shimazu, H. Hattori, K. Tanabe, J. Chem. Soc. Faraday Trans. 1 77, 2451–2463 (1981)CrossRefGoogle Scholar
  11. 11.
    K. Shibata, T. Kiyoura, J. Kitagawa, T. Sumiyoshi, K. Tanabe, Bull. Chem. Soc. Jpn 46, 2985–2988 (1973)CrossRefGoogle Scholar
  12. 12.
    M. Waqif, J. Bachelier, O. Saur, J.-C. Lavalley, J. Mol. Catal. 72, 127–138 (1992)CrossRefGoogle Scholar
  13. 13.
    K. Mori, Y. Ohshima, K. Ehara, T. Akiyama, Chem. Lett. 38, 524–525 (2009)CrossRefGoogle Scholar
  14. 14.
    D. Uraguchi, M. Terada, J. Am. Chem. Soc. 126, 5356–5357 (2004)CrossRefGoogle Scholar
  15. 15.
    M. Terada, K. Sorimachi, J. Am. Chem. Soc. 129, 292–293 (2007)CrossRefGoogle Scholar
  16. 16.
    M. Rueping, A.P. Antonchick, E. Sugiono, K. Grenader, Angew. Chemie Int. Ed. 48, 908–910 (2009)CrossRefGoogle Scholar
  17. 17.
    R.K. Singh, B. Singh, R. Duvedi, S. Kumar, Res. Chem. Intermed. 41, 4083–4099 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Sai, H. Yamamoto, J. Am. Chem. Soc. 137, 7091–7094 (2015)CrossRefGoogle Scholar
  19. 19.
    D. Wang, D. Astruc, Chem. Rev 114, 6949–6985 (2014)CrossRefGoogle Scholar
  20. 20.
    A. Maleki, H. Movahed, P. Ravaghi, T. Kari, RSC Adv. 6, 98777–98787 (2016)CrossRefGoogle Scholar
  21. 21.
    Z. Peng, H. Tang, Y. Tang, K.F. Yao, H.H. Shao, Int. J. Photoenergy 2014 (2014)Google Scholar
  22. 22.
    Z.L. Liu, X. Wang, K.L. Yao, G.H. Du, Q.H. Lu, Z.H. Ding, J. Tao, Q. Ning, X.P. Luo, D.Y. Tian, J. Mater. Sci. 39, 2633–2636 (2004)CrossRefGoogle Scholar
  23. 23.
    O.M. Lemine, K. Omri, B. Zhang, L. El Mir, M. Sajieddine, A. Alyamani, M. Bououdina, Superlattices Microstruct. 52, 793–799 (2012)CrossRefGoogle Scholar
  24. 24.
    F. Dumitrache, I. Morjan, R. Alexandrescu, V. Ciupina, G. Prodan, I. Voicu, C. Fleaca, L. Albu, M. Savoiu, I. Sandu, Appl. Surf. Sci. 247, 25–31 (2005)CrossRefGoogle Scholar
  25. 25.
    H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Angew. Chem. 117, 2842–2845 (2005)CrossRefGoogle Scholar
  26. 26.
    Y. Tian, B. Yu, X. Li, K. Li, J. Mater. Chem. 21, 2476–2481 (2011)CrossRefGoogle Scholar
  27. 27.
    J.P. Cheng, R. Ma, D. Shi, F. Liu, X.B. Zhang, Ultrason. Sonochem. 18, 1038–1042 (2011)CrossRefGoogle Scholar
  28. 28.
    N. Basavegowda, K.B.S. Magar, K. Mishra, Y.R. Lee, New J. Chem. 38, 5415–5420 (2014)CrossRefGoogle Scholar
  29. 29.
    A.J. Amali, R.K. Rana, Green Chem. 11, 1781–1786 (2009)CrossRefGoogle Scholar
  30. 30.
    M. Zhu, G. Diao, J. Phys. Chem. C 115, 24743–24749 (2011)CrossRefGoogle Scholar
  31. 31.
    R. Cano, M. Yus, D.J. Ramón, Tetrahedron 68, 1393–1400 (2012)CrossRefGoogle Scholar
  32. 32.
    F. Zhang, J. Jin, X. Zhong, S. Li, J. Niu, R. Li, J. Ma, Green Chem. 13, 1238–1243 (2011)CrossRefGoogle Scholar
  33. 33.
    A. Hu, G.T. Yee, W. Lin. J. Am. Chem. Soc. 127, 12486–12487 (2005)CrossRefGoogle Scholar
  34. 34.
    C.A. Gorski, J.T. Nurmi, P.G. Tratnyek, T.B. Hofstetter, M.M. Scherer, Environ. Sci. Technol. 44, 55–60 (2009)CrossRefGoogle Scholar
  35. 35.
    X. Zheng, S. Luo, L. Zhang, J.-P. Cheng, Green Chem. 11, 455–458 (2009)CrossRefGoogle Scholar
  36. 36.
    A. Maleki, H. Movahed, R. Paydar, RSC Adv. 6, 13657–13665 (2016)CrossRefGoogle Scholar
  37. 37.
    A. Maleki, Tetrahedron 68, 7827–7833 (2012)CrossRefGoogle Scholar
  38. 38.
    J. Zhu, H. Bienaymé, Multicomponent Reactions (Wiley, New York, 2006)Google Scholar
  39. 39.
    A. Maleki, M. Kamalzare. Catal. Commun. 53, 67–71 (2014)CrossRefGoogle Scholar
  40. 40.
    H.-Y. Lü, S.-H. Yang, J. Deng, Z.-H. Zhang, Aust. J. Chem 63, 1290–1296 (2010)CrossRefGoogle Scholar
  41. 41.
    D. Beydoun, R. Amal, G. Low, S. McEvoy, J. Mol. Catal. A. 180, 193–200 (2002)CrossRefGoogle Scholar
  42. 42.
    A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Chem. Commun. 1, 70–71 (2003)CrossRefGoogle Scholar
  43. 43.
    Y. Dai, J. van Spronsen, G.-J. Witkamp, R. Verpoorte, Y.H. Choi, J. Nat. Prod. 76, 2162–2173 (2013)CrossRefGoogle Scholar
  44. 44.
    G. García, S. Aparicio, R. Ullah, M. Atilhan, Energy Fuels 29, 2616–2644 (2015)CrossRefGoogle Scholar
  45. 45.
    M.-J. Hour, L.-J. Huang, S.-C. Kuo, Y. Xia, K. Bastow, Y. Nakanishi, E. Hamel, K.-H. Lee, J. Med. Chem. 43, 4479–4487 (2000)CrossRefGoogle Scholar
  46. 46.
    Y.S. Sadanandam, K.R.M. Reddy, A.B. Rao, Eur. J. Med. Chem. 22, 169–173 (1987)CrossRefGoogle Scholar
  47. 47.
    G. Bonola, E. Sianesi, J. Med. Chem. 13, 329–332 (1970)CrossRefGoogle Scholar
  48. 48.
    J.B. Jiang, D.P. Hesson, B.A. Dusak, D.L. Dexter, G.J. Kang, E. Hamel, J. Med. Chem. 33, 1721–1728 (1990)CrossRefGoogle Scholar
  49. 49.
    K. Hattori, Y. Kido, H. Yamamoto, J. Ishida, K. Kamijo, K. Murano, M. Ohkubo, T. Kinoshita, A. Iwashita, K. Mihara, J. Med. Chem. 47, 4151–4154 (2004)CrossRefGoogle Scholar
  50. 50.
    M. Bakavoli, O. Sabzevari, M. Rahimizadeh, Chin. Chem. Lett. 18, 1466–1468 (2007)CrossRefGoogle Scholar
  51. 51.
    J. Chen, D. Wu, F. He, M. Liu, H. Wu, J. Ding, W. Su, Tetrahedron Lett. 49, 3814–3818 (2008)CrossRefGoogle Scholar
  52. 52.
    M. Dabiri, P. Salehi, A.A. Mohammadi, M. Baghbanzadeh, Synth. Commun. 35, 279–287 (2005)CrossRefGoogle Scholar
  53. 53.
    M. Dabiri, P. Salehi, S. Otokesh, M. Baghbanzadeh, G. Kozehgary, A.A. Mohammadi, Tetrahedron Lett. 46, 6123–6126 (2005)CrossRefGoogle Scholar
  54. 54.
    Y. Gao, Methods for Synthesizing Libraries of Dihydro-Quinazolinones, Patent No. 6,274,383. (2001)Google Scholar
  55. 55.
    A. Shaabani, A. Maleki, H. Mofakham, Synth. Commun. 38, 3751–3759 (2008)CrossRefGoogle Scholar
  56. 56.
    W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62–69 (1968)CrossRefGoogle Scholar
  57. 57.
    S.C. Pang, S.Y. Kho, S.F. Chin, J. Nanomater 2012, 125 (2012)Google Scholar
  58. 58.
    J. Jiang, G. Oberdörster, P. Biswas, J. Nanoparticle Res. 11, 77–89 (2009)CrossRefGoogle Scholar
  59. 59.
    G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catal. Today 41, 207–219 (1998)CrossRefGoogle Scholar
  60. 60.
    J. Zhang, D. Ren, Y. Ma, W. Wang, H. Wu, Tetrahedron 70, 5274–5282 (2014)CrossRefGoogle Scholar
  61. 61.
    X.-S. Wang, K. Yang, J. Zhou, S.-J. Tu, J. Comb. Chem. 12, 417–421 (2010)CrossRefGoogle Scholar
  62. 62.
    V.B. Rao, C. V Ratnam, Indian J. Chem. B. 18, 409–412 (1979)Google Scholar
  63. 63.
    D. Rambabu, S.K. Kumar, B.Y. Sreenivas, S. Sandra, A. Kandale, P. Misra, M.V.B. Rao, M. Pal, Tetrahedron Lett. 54, 495–501 (2013)CrossRefGoogle Scholar
  64. 64.
    H.L. Yale, J. Heterocycl. Chem. 14, 1357–1359 (1977)CrossRefGoogle Scholar
  65. 65.
    S. Santra, M. Rahman, A. Roy, A. Majee, A. Hajra, Catal. Commun. 49, 52–57 (2014)CrossRefGoogle Scholar
  66. 66.
    M. Wang, T.T. Zhang, Y. Liang, J.J. Gao, Chin. Chem. Lett. 22, 1423–1426 (2011)CrossRefGoogle Scholar
  67. 67.
    A. Ghorbani-Choghamarani, T. Taghipour, Lett. Org. Chem. 8, 470–476 (2011)CrossRefGoogle Scholar
  68. 68.
    R. Sharma, A.K. Pandey, P. Chauhan, Synlett 23, 2209–2214 (2012)CrossRefGoogle Scholar
  69. 69.
    A. Takács, A. Fodor, J. Németh, Z. Hell, Synth. Commun. 44, 2269–2275 (2014)CrossRefGoogle Scholar
  70. 70.
    M. Narasimhulu, Y.R. Lee, Tetrahedron 67, 9627–9634 (2011)CrossRefGoogle Scholar
  71. 71.
    B.-H. Chen, J.-T. Li, G.-F. Chen, Ultrason. Sonochem. 23, 59–65 (2015)CrossRefGoogle Scholar
  72. 72.
    M. Baghbanzadeh, P. Salehi, M. Dabiri, G. Kozehgary, Synthesis 2006, 344–348 (2006)Google Scholar
  73. 73.
    L. Rajaka, N.R. Penumati, K. Nagaiah, Y. Poornachandra, C.G. Kumar, Synth. Commun. 45, 1893–1901 (2015)CrossRefGoogle Scholar
  74. 74.
    Z.-H. Zhang, H.-Y. Lü, S.-H. Yang, J.-W. Gao, J. Comb. Chem. 12, 643–646 (2010)CrossRefGoogle Scholar
  75. 75.
    S. Guo, Y. Li, L. Tao, W. Zhang, X. Fan, RSC Adv. 4, 59289–59296 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Catalysts and Organic Synthesis Research Laboratory, Department of ChemistryIran University of Science and TechnologyTehranIran

Personalised recommendations