Advertisement

Journal of Porous Materials

, Volume 24, Issue 5, pp 1165–1173 | Cite as

Facile fabrication of multifunctional monolithic polyamide aerogels

  • Hongbo RenEmail author
  • Jiayi Zhu
  • Yutie Bi
  • Yewei Xu
  • Lin ZhangEmail author
Article

Abstract

The polyamide (PA) aerogels with good-formability via a sol–gel technology were facilely fabricated by using melamine and aroyl chloride followed by CO2 supercritical drying. The synthesis procedure was straightforward and simple, relying on no nitrogen-based protective atmosphere. The influences of aroyl chloride monomer on the gelation time and aerogel structure were discussed. The structural properties of PA aerogels were characterized by the scanning electron microscopy (SEM) and Brunauer–Emmett–Teller methods (BET). The results indicated that the PA aerogels had a typical three-dimensional porous structure. The PA aerogels exhibited well multifunctional properties, such as flame resistance, thermal insulation, dielectric characteristics and mechanical properties. Due to well multifunctional properties, the PA aerogels had potential for the use in construction and building materials.

Keywords

Polyamide aerogels Sol–gel method Aroyl chloride monomer Multifunctional properties 

Notes

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant No. 51502274), the Doctoral Research Fund of Southwest University of Science and Technology (No. 15zx7137, 16zx7142), and the Research Fund for Joint Laboratory for Extreme Conditions Matter Properties (No. 13zxjk04, 14tdjk03).

Supplementary material

10934_2016_356_MOESM1_ESM.docx (67 kb)
Supplementary material 1 (DOCX 67 KB)

References

  1. 1.
    A. Du, B. Zhou, Z. Zhang, J. Shen, A special material or a new state of matter: A review and reconsideration of the aerogel. Materials 6, 941 (2013)CrossRefGoogle Scholar
  2. 2.
    A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications. Chem. Rev 102, 4243–4266 (2002)CrossRefGoogle Scholar
  3. 3.
    J. Biener, M. Stadermann, M. Suss, M.A. Worsley, M.M. Biener, K.A. Rose et al., Advanced carbon aerogels for energy applications. Energy Environ. Sci. 4, 656–667 (2011)CrossRefGoogle Scholar
  4. 4.
    Y. Cui, B. Li, H. He, W. Zhou, B. Chen, G. Qian, Metal–Organic frameworks as platforms for functional materials. Acc. Chem. Res 49, 483–493 (2016)CrossRefGoogle Scholar
  5. 5.
    C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev 45, 517–531 (2016)CrossRefGoogle Scholar
  6. 6.
    K. Sakaushi, M. Antonietti, Carbon- and nitrogen-based porous solids: A recently emerging class of materials. Bull. Chem. Soc. Jpn 88, 386–398 (2015)CrossRefGoogle Scholar
  7. 7.
    V. Malgras, Q. Ji, Y. Kamachi, T. Mori, F.-K. Shieh, K.C.W. Wu et al., Templated synthesis for nanoarchitectured porous materials. Bull. Chem. Soc. Jpn 88, 1171–1200 (2015)CrossRefGoogle Scholar
  8. 8.
    E. Yamamoto, K. Kuroda, Colloidal mesoporous silica nanoparticles. Bull. Chem. Soc. Jpn 89, 501–539 (2016)CrossRefGoogle Scholar
  9. 9.
    N. Leventis, C. Sotiriou-Leventis, G. Zhang, A-M.M. Rawashdeh, Nanoengineering strong silica aerogels. Nano Lett. 2, 957–960 (2002)CrossRefGoogle Scholar
  10. 10.
    S.M. Jones, Aerogel: Space exploration applications. J. Sol-Gel Sci. Technol. 40, 351–357 (2006)CrossRefGoogle Scholar
  11. 11.
    P.C. Thapliyal, K. Singh, Aerogels as promising thermal insulating materials: An overview. J. Mater 2014, 10 (2014)Google Scholar
  12. 12.
    L.W. Hrubesh, Aerogel applications. J. Non-Cryst. Solids 225, 335–342 (1998)CrossRefGoogle Scholar
  13. 13.
    A.P. Rao, A.V. Rao, UKH Bangi, Low thermalconductive, transparent and hydrophobic ambient pressure dried silica aerogels with various preparation conditions using sodium silicate solutions. J. Sol-Gel Sci. Technol. 47, 85–94 (2008)Google Scholar
  14. 14.
    V. Gibiat, O. Lefeuvre, T. Woignier, J. Pelous, J. Phalippou, Proceedings of the Fourth International Symposium on AEROGELSAcoustic properties and potential applications of silica aerogels. J. Non-Cryst. Solids 186, 244–255 (1995)CrossRefGoogle Scholar
  15. 15.
    J. Lee, H. Jeong, S. Kang, Derivative and GA-based methods in metamodeling of back-propagation neural networks for constrained approximate optimization. Struct. Multidiscip. Optim. 35, 29–40 (2008)CrossRefGoogle Scholar
  16. 16.
    J.K. Lee, G.L. Gould, W. Rhine, Polyurea based aerogel for a high performance thermal insulation material. J. Sol-Gel Sci. Technol 49, 209–220 (2009)CrossRefGoogle Scholar
  17. 17.
    N. Leventis, C. Sotiriou-Leventis, N. Chandrasekaran, S. Mulik, Z.J. Larimore, H. Lu et al., Multifunctional polyurea aerogels from isocyanates and water. A structure–property case study. Chem. Mater 22, 6692–6710 (2010)CrossRefGoogle Scholar
  18. 18.
    G. Biesmans, A. Mertens, L. Duffours, T. Woignier, J. Phalippou, Polyurethane based organic aerogels and their transformation into carbon aerogels. J. Non-Cryst. Solids 225, 64–68 (1998)CrossRefGoogle Scholar
  19. 19.
    C. Daniel, S. Giudice, G. Guerra, Syndiotatic polystyrene aerogels with β, γ, and ε crystalline phases. Chem. Mater 21, 1028–1034 (2009)CrossRefGoogle Scholar
  20. 20.
    P. Lorjai, T. Chaisuwan, S. Wongkasemjit, Porous structure of polybenzoxazine-based organic aerogel prepared by sol–gel process and their carbon aerogels. J. Sol-Gel Sci. Technol 52, 56–64 (2009)CrossRefGoogle Scholar
  21. 21.
    H. Guo, MAB Meador, L. McCorkle, D.J. Quade, J. Guo, B. Hamilton et al., Tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength. ACS Appl. Mater. Interfaces 4, 5422–5429 (2012)CrossRefGoogle Scholar
  22. 22.
    N. Leventis, C. Chidambareswarapattar, D.P. Mohite, Z.J. Larimore, H. Lu, C. Sotiriou-Leventis, Multifunctional porous aramids (aerogels) by efficient reaction of carboxylic acids and isocyanates. J. Mater. Chem 21, 11981–11986 (2011)CrossRefGoogle Scholar
  23. 23.
    J.C. Williams, MAB Meador, L. McCorkle, C. Mueller, N. Wilmoth, Synthesis and properties of step-growth polyamide Aerogels cross-linked with triacid chlorides. Chem. Mater 26, 4163–4171 (2014)CrossRefGoogle Scholar
  24. 24.
    S. He, Y. Zhang, X. Shi, Y. Bi, X. Luo, L. Zhang, Rapid and facile synthesis of a low-cost monolithic polyamide aerogel via sol–gel technology. Mater. Lett 144, 82–84 (2015)CrossRefGoogle Scholar
  25. 25.
    S. He, Y. Bi, Y. Zhang, H. Cao, X. Shi, X. Luo et al., One-pot synthesis and characterization of acid-catalyzed melamine formaldehyde/SiO2 aerogel via sol–gel technology. J. Sol-Gel Sci. Technol 74, 175–180 (2014)CrossRefGoogle Scholar
  26. 26.
    H. Ren, J. Zhu, Y. Bi, Y. Xu, L. Zhang. One-step fabrication of transparent hydrophobic silica aerogels via in situ surface modification in drying process. J. Sol-Gel Sci. Technol. 2016:1–7.Google Scholar
  27. 27.
    J. Zhu, X. Yang, Z. Fu, J. He, C. Wang, W. Wu et al., Three-dimensional macroassembly of sandwich-like, hierarchical, porous carbon/graphene nanosheets towards ultralight, superhigh surface area, multifunctional aerogels. Chem. Eur. J 22, 2515–2524 (2016)CrossRefGoogle Scholar
  28. 28.
    J. Zhu, X. Yang, Z. Fu, C. Wang, W. Wu, L. Zhang, Facile fabrication of ultra-low density, high-surface-area, broadband antireflective carbon aerogels as ultra-black materials. J. Porous Mater 23, 1217–1225 (2016)CrossRefGoogle Scholar
  29. 29.
    H. Ren, J. Zhu, Y. Bi, Y. Xu, L. Zhang, Facile fabrication of flexible graphene/porous carbon microsphere hybrid films and their application in supercapacitors. RSC Adv 6, 89140–89147 (2016)CrossRefGoogle Scholar
  30. 30.
    X. Shi, J. Zhu, Y. Zhang, S. He, Y. Bi, L. Zhang, Facile synthesis of structure-controllable, N-doped graphene aerogels and their application in supercapacitors. RSC Adv. 5, 77130–77137 (2015)CrossRefGoogle Scholar
  31. 31.
    H. Ren, X. Shi, J. Zhu, Y. Zhang, Y. Bi, L. Zhang, Facile synthesis of N-doped graphene aerogel and its application for organic solvent adsorption. J. Mater. Sci 51, 6419–6427 (2016)CrossRefGoogle Scholar
  32. 32.
    J. Zhu, J. He, Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors. ACS Appl. Mater. Interfaces 4, 1770–1776 (2012)CrossRefGoogle Scholar
  33. 33.
    X. Hao, G. Gai, J. Liu, Y. Yang, Y. Zhang, C-w Nan, Flame retardancy and antidripping effect of OMT/PA nanocomposites. Mater. Chem. Phys 96, 34–41 (2006)CrossRefGoogle Scholar
  34. 34.
    T. Kashiwagi, R.H. Harris Jr., X. Zhang, R.M. Briber, B.H. Cipriano, S.R. Raghavan et al., Flame retardant mechanism of polyamide 6–clay nanocomposites. Polymer 45, 881–891 (2004)CrossRefGoogle Scholar
  35. 35.
    H. Qin, Q. Su, S. Zhang, B. Zhao, M. Yang, Thermal stability and flammability of polyamide 66/montmorillonite nanocomposites. Polymer 44, 7533–7538 (2003)CrossRefGoogle Scholar
  36. 36.
    B.X. Du, Z.X. Liu, Y.G. Guo, Effect of direct fluorination on surface charge of polyimide films using repetitive pulsed power. IEEE. Trans. Dielectr. Electrical Insul. 22, 1777–1784 (2015)CrossRefGoogle Scholar
  37. 37.
    S.-J. Park, K.-S. Cho, S.-H. Kim, A study on dielectric characteristics of fluorinated polyimide thin film. J. Colloid Interface Sci. 272, 384–390 (2004)CrossRefGoogle Scholar
  38. 38.
    S.-J. Park, H.-S. Kim, F.-L. Jin, Influence of fluorination on surface and dielectric characteristics of polyimide thin film. J. Colloid Interface Sci. 282, 238–240 (2005)CrossRefGoogle Scholar
  39. 39.
    Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi, L. Qu, A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. 124, 11533–11537 (2012)CrossRefGoogle Scholar
  40. 40.
    H. Sun, Z. Xu, C. Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater 25, 2554–2560 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Joint Laboratory for Extreme Conditions Matter PropertiesSouthwest University of Science and Technology and Research Center of Laser FusionMianyangChina
  2. 2.School of Material Science and EnginneringSouthwest University of Science and TechnologyMianyangChina
  3. 3.Research Center of Laser FusionChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations