Advertisement

Journal of Porous Materials

, Volume 24, Issue 4, pp 941–946 | Cite as

Spherical mesocellular silica foams: a superior support for hydrodesulfurization of fluid catalytic cracking diesel

  • Xiaofeng Zhou
  • Bo Wang
  • Shaotong Song
  • Aijun DuanEmail author
  • Zhen Zhao
  • Yanjun Gong
  • Chunming Xu
  • Kebin ChiEmail author
Article

Abstract

High surface area aluminum containing spherical mesocellular silica foams (SMCFs) with ultra-large pore volume and 3D pore size were successfully synthesized through a simple hydrothermal route, and the as-synthesized aluminum containing SMCFs (Al-SMCFs) was applied as the support of NiMo-base catalyst for the hydrodesulfurization (HDS) of fluid catalytic cracking (FCC) diesel. The as-synthesized supports and corresponding catalysts were characterized by powder small X-ray diffraction, nitrogen physisorption, scanning electron microscopy, transmission electron microscopy (TEM), inductively coupled plasma optical emission spectroscopy, and temperature-programmed reduction with H2. The characterization results showed that, compared with other prepared catalysts (NiMo/Al-SBA-15 and NiMo/Al-KIT-6), the NiMo/Al-SMCFs catalyst possessed the most optimal physicochemical parameters, i.e., ultra-large 3D pore size (42.0 nm), high surface area (330.1 m2·g−1), and ultra-large pore volume (1.96 cm3·g−1), resulting in the formation of more homogeneous distribution of octahedral Mo active species and good mass transfer performance. Consequently, the NiMo/Al-SMCFs catalyst displayed the outstanding HDS performance (98.8%) of FCC diesel, confirming that the Al-SMCFs may be a type of promising candidate for oil hydrotreating.

Keywords

Spherical mesocellular silica foams Support Catalyst Hydrodesulfurization Diesel 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21276277 and U1463207), CNOOC project, CNPC major project, and Guangxi University PRPPIT Project.

References

  1. 1.
    D.Q. Zhang, A.J. Duan, Z. Zhao, C.M. Xu, J. Catal. 274, 273 (2010)CrossRefGoogle Scholar
  2. 2.
    H.D. Wu, A.J. Duan, Z. Zhao, T.S. Li, R. Prins, X.F. Zhou, J. Catal. 317, 303 (2014)CrossRefGoogle Scholar
  3. 3.
    H.L. Yin, X.L. Liu, Y.Y. Yao, T.N. Zhou, J. Porous Mater. 22, 29 (2015)CrossRefGoogle Scholar
  4. 4.
    X.F. Zhou, S.T. Song, A.J. Duan, Z. Zhao, Y.J. Gong, X.L. Wang, J.M. Li, Y.C. Wei, G.Y. Jiang, J. Liu, ChemCatChem 7, 1948 (2015)CrossRefGoogle Scholar
  5. 5.
    L. Dimitrov, R. Palcheva, A. Spojakina, K. Jiratova, J. Porous Mater. 18, 425 (2011)CrossRefGoogle Scholar
  6. 6.
    J.W. Da, D.Z. Han, L. Qian, J. Yan, A.H. Liu, J. Porous Mater. 15, 199 (2008)CrossRefGoogle Scholar
  7. 7.
    D. Valencia, T. Klimova, Appl. Catal. B 129, 137 (2013)CrossRefGoogle Scholar
  8. 8.
    W. Li, J. Liu, D.Y. Zhao, Nat. Rev. Mater. 1, 16023 (2016)CrossRefGoogle Scholar
  9. 9.
    C. Song, K.M. Reddy, Appl. Catal. A 176, 1 (1999)CrossRefGoogle Scholar
  10. 10.
    M. Hussain, S.K. Song, J.H. Lee, S.K. Ihm, Ind. Eng. Chem. Res. 45, 536 (2006)CrossRefGoogle Scholar
  11. 11.
    T.A. Zepeda, B. Pawelec, J.L.G. Fierro, T. Halachev, J. Catal. 242, 254 (2006)CrossRefGoogle Scholar
  12. 12.
    T.S. Li, A.J. Duan, Z. Zhao, B.J. Liu, G.Y. Jiang, J. Liu, Y.C. Wei, H.F. Pan, Fuel 117, 974 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Li, D.H. Pan, C.Z. Yu, Y. Fan, X.J. Bao, J. Catal. 286, 124 (2012)CrossRefGoogle Scholar
  14. 14.
    A. Olivas, T.A. Zepeda, Catal. Today 143, 120 (2009)CrossRefGoogle Scholar
  15. 15.
    D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548 (1998)CrossRefGoogle Scholar
  16. 16.
    T.W. Kim, F. Kleitz, B. Paul, R. Ryoo, J. Am. Chem. Soc. 127, 7601 (2005)CrossRefGoogle Scholar
  17. 17.
    X.F. Zhou, A.J. Duan, Z. Zhao, Y.J. Gong, H.D. Wu, J.M. Li, Y.C. Wei, G.Y. Jiang, J. Liu, Y. Zhang, J. Mater. Chem. A 2, 6823 (2014)CrossRefGoogle Scholar
  18. 18.
    X.F. Zhou, K.B. Chi, A.J. Duan, Z. Zhao, H.H. Dong, Y.J. Gong, S.T. Song, X.L. Wang, C.M. Xu, Part. Part. Syst. Charact. 33, 190 (2016)CrossRefGoogle Scholar
  19. 19.
    R. López Cordero, A. López Agudo, Appl. Catal. 175, 23 (2000)CrossRefGoogle Scholar
  20. 20.
    R. López Cordero, F.J. Gil Llambias, A. López Agudo, Appl. Catal. A 74, 125 (1991)CrossRefGoogle Scholar
  21. 21.
    R. Thomas, E.M. van Oers, V.H.J. de Beer, J.A. Moulijn, J. Catal. 84, 275 (1983)CrossRefGoogle Scholar
  22. 22.
    T.E. Klimova, D. Valencia, J.A. Mendoza-Nieto, P. Hernández-Hipólito, J. Catal. 304, 29 (2013)CrossRefGoogle Scholar
  23. 23.
    M.Á. Calderón-Magdaleno, J.A. Mendoza-Nieto, T.E. Klimova, Catal. Today 220–222, 78 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xiaofeng Zhou
    • 1
  • Bo Wang
    • 1
  • Shaotong Song
    • 2
  • Aijun Duan
    • 1
    Email author
  • Zhen Zhao
    • 1
  • Yanjun Gong
    • 1
  • Chunming Xu
    • 1
  • Kebin Chi
    • 2
    Email author
  1. 1.State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumBeijingPeople’s Republic of China
  2. 2.Petrochemical Research InstitutePetroChina Company LimitedBeijingPeople’s Republic of China

Personalised recommendations