Journal of Porous Materials

, Volume 24, Issue 4, pp 923–932 | Cite as

Optimising sodium silica gel for Ferroin immobilization

  • Claudia Lenk
  • Carlos Mattea
  • Siegfried Stapf
  • J. Michael KöhlerEmail author


The addition of compounds like enzymes or catalysts in silica gel matrix expand its applications as sensor material, controlled drug-delivery and photo-active material, as well as it allows the study of pattern generation in oscillating chemical reactions in dependence on spatial catalyst structures. Creating catalyst structures requires at the moment photolithography or emulsions. A simpler way of creating spatial catalyst structures in silica gels is spotting the catalyst onto the gel matrix. The result of this procedure mainly depends on the ability of the gel to absorb the catalyst and immobilise it in the desired structure in aqueous solutions. We investigate if the addition of polymers into the silica gel can enhance the immobilization of Ferroin, which is an indicator for redox potentials and a standard catalyst for the Belousov–Zhabotinsky reaction. Polyethylenglycol (PEG), poly-styrene sodium sulfate and poly-styrenesulfate-co-maleic acid sodium salt (PSS-co-PM) were tested. By optical measurements the immobilization was analyzed and scanning electron microscopy, energy dispersive X-ray spectroscopy and nuclear magnetic resonance measurements were applied for microstructure and chemical element analysis. We found that PEG and PSS-co-PM enhance the stability of Ferroin spots in silica gels. Thereby, PEG changes the silica gel microstructure without being incorporated into the solid gel, whereas PSS-co-PM is incorporated into the silica gel and (chemically) interacts with Ferroin.


Silica gel Ferroin entrapment Sodium metasilicate PSSS PEG PSS-co-PM 



C. L. thanks the Carl-Zeiss-Stiftung for financial support.


  1. 1.
    T. Woignier, J. Primera, M. Lamy, C. Fehr, E. Anglaret, R. Sempere, J. Phalippou, J. Non-Cryst. Solids 350, 299 (2004)CrossRefGoogle Scholar
  2. 2.
    H.Y. Jung, R.K. Gupta, D.W. Seo, Y.H. Kim, C.M. Whang, Bull. Korean Chem. Soc. 23(6), 884 (2002)CrossRefGoogle Scholar
  3. 3.
    Q. Guo, T. Wang, J. Mater. Sci. 48(10), 3716 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Grandi, A. Magistris, P. Mustarelli, E. Quartarone, C. Tomasi, L. Meda, J. Non-Cryst. Solids 352(3), 273 (2006)CrossRefGoogle Scholar
  5. 5.
    J. Livage, T. Coradin, C. Roux, J. Phys. Condens. Matter 13, R673 (2001)CrossRefGoogle Scholar
  6. 6.
    H. Podbielska, A. Ulatowska-Jarza, Bull. Pol. Acad. Sci. Chem. 53(3), 261 (2005)Google Scholar
  7. 7.
    M. Pagliaro, Silica-Based Materials for Advanced Chemical Applications, 1st edn. (Royal Society of Chemistry, London, 2009)Google Scholar
  8. 8.
    M. Power, B. Hosticka, E. Black, C. Daitch, P. Norris, J. Non-Cryst. Solids 285(1–3), 303 (2001)CrossRefGoogle Scholar
  9. 9.
    J.F.T. Conroy, M.E. Power, J. Martin, B. Earp, B. Hosticka, C.E. Daitch, P.M. Norris, J. Sol-Gel Sci. Technol. 18, 269 (2000)CrossRefGoogle Scholar
  10. 10.
    H. Boettcher, P. Slowik, W. Süss, J. Sol-Gel Sci. Technol. 13, 277 (1998)CrossRefGoogle Scholar
  11. 11.
    A.S. Mikhailov, K. Showalter, Phys. Rep. 425(2–3), 79 (2006)CrossRefGoogle Scholar
  12. 12.
    V.K. Vanag, I.R. Epstein, Chaos 18(2), 026107 (2008)CrossRefGoogle Scholar
  13. 13.
    J. Bolyo, T. Mair, G. Kuncova, M.J.B. Hauser, Biophys. Chem. 151(1), 54 (2010)CrossRefGoogle Scholar
  14. 14.
    R. Aliev, K. Agladze, Phys. D 50(1), 65 (1991)CrossRefGoogle Scholar
  15. 15.
    B. Neumann, Z. Nagy-Ungvarai, S.C. Müller, Chem. Phys. Lett. 211(1), 36 (1993)CrossRefGoogle Scholar
  16. 16.
    T. Yamaguchi, S.C. Müller, Phys. D 49, 40 (1991)CrossRefGoogle Scholar
  17. 17.
    J. Schlesner, V.S. Zykov, H. Brandtstädter, I. Gerdes, H. Engel, New J. Phys. 10(1), 015003 (2008)CrossRefGoogle Scholar
  18. 18.
    K. Suzuki, T. Yoshinobu, H. Iwasaki, J. Phys. Chem. A 104(21), 5154 (2000)CrossRefGoogle Scholar
  19. 19.
    A.C. Pierre, A. Rigacci, Aerogels Handbook (Springer, New York, 2011)Google Scholar
  20. 20.
    Y.Q. Song, J. Magn. Reson. 229, 12 (2013)CrossRefGoogle Scholar
  21. 21.
    R. Kimmich, NMR: Tomography, Diffusometry, Relaxometry, 1st edn. (Springer, Berlin, 1997)CrossRefGoogle Scholar
  22. 22.
    S. Meiboom, D. Gill, Rev. Sci. Instrum. 29(8), 688 (1958)CrossRefGoogle Scholar
  23. 23.
    F.D. Orazio, S. Bhattacharja, W.P. Halperin, Phys. Rev. 42(16), 9810 (1990)CrossRefGoogle Scholar
  24. 24.
    L. Latour, P. Mitra, R. Kleinberg, C. Sotak, J. Magn. Reson. Ser. A 101(3), 342 (1993)CrossRefGoogle Scholar
  25. 25.
    R.L. Kleinberg, W.E. Kenyon, P.P. Mitra, J. Magn. Reson. Ser. A 108(2), 206 (1994)CrossRefGoogle Scholar
  26. 26.
    P.P. Mitra, P.N. Sen, Phys. Rev. B 45(1), 143 (1992)CrossRefGoogle Scholar
  27. 27.
    A. Watson, C. Chang, Prog. Nucl. Magn. Reson. Spectrosc. 31(4), 343 (1997)CrossRefGoogle Scholar
  28. 28.
    P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy, revised edn. (Oxford University Press, New York, 1991)Google Scholar
  29. 29.
    K.R. Brownstein, C.E. Tarr, Phys. Rev. A 19(6), 2446 (1979)CrossRefGoogle Scholar
  30. 30.
    Z.R. Hinedi, A.C. Chang, M.A. Anderson, D.B. Borchardt, Water Resour. Res. 33(12), 2697 (1997)CrossRefGoogle Scholar
  31. 31.
    T.R. Bryar, C.J. Daughney, R.J. Knight, J. Magn. Reson. 142, 74 (2000)CrossRefGoogle Scholar
  32. 32.
    E. Grunewald, R. Knight, Geophysics 74(6), E215 (2009)CrossRefGoogle Scholar
  33. 33.
    T.S. Lee, I.M. Kolthoff, D.L. Leussing, J. Am. Chem. Soc. 70, 2348 (1948)CrossRefGoogle Scholar
  34. 34.
    D.T. Newcombe, T.J. Cardwell, R.W. Cattrall, S.D. Kolev, Anal. Chim. Acta 395, 27 (1999)CrossRefGoogle Scholar
  35. 35.
    D.W. Magerum, J. Am. Chem. Soc. 79, 2728 (1957)CrossRefGoogle Scholar
  36. 36.
    P. Agren, J. Counter, P. Laggner, J. Non-Cryst. Solids 261(1–3), 195 (2000)CrossRefGoogle Scholar
  37. 37.
    J. Martin, B. Hosticka, C. Lattimer, P. Norris, J. Non-Cryst. Solids 285(1–3), 222 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institut für Chemie und BiotechnikTechnische Universität IlmenauIlmenauGermany
  2. 2.Institut für PhysikTechnische Universität IlmenauIlmenauGermany
  3. 3.Institut für Mikro- und NanoelektronikTechnische Universität IlmenauIlmenauGermany

Personalised recommendations