Advertisement

Journal of Porous Materials

, Volume 24, Issue 4, pp 867–879 | Cite as

Synthesis of mesoporous zirconium-containing silicates and their application for catalytic asymmetric addition of diethylzinc to aldehydes

  • Benhua Huang
  • Jie Wang
  • Tao Yang
  • Yu Li
  • Donghua Zhang
  • Aqun Zheng
  • Yang SunEmail author
Article
  • 199 Downloads

Abstract

A series of mesoporous zirconium-containing silicates were prepared in sol–gel, which were further functionalized by chiral sulfonyl chloride and proline for catalytic asymmetric addition of diethylzinc to aldehydes. These materials had good porosities, hexagonal symmetries and internal chiralities. Moreover, significant morphological variations were observed when preparative conditions were changed. These materials also showed good to excellent enantioselectivities in catalysis, and there was chiral induction synergy between silicate matrix and attached ligand. Recycling of catalyst was tested, and promising results were obtained. This study would contribute to the design of mesoporous chiral catalysts.

Keywords

Mesoporous zirconium-containing silicate Functionalization Diethylzinc addition Chiral induction Enantioselectivity 

Notes

Acknowledgements

This work was supported by Fundamental Research Funds for the Central Universities (No. xjj2014005, Application of Porous Helical Support in Catalytic Asymmetric Reactions).

Supplementary material

10934_2016_326_MOESM1_ESM.doc (2.3 mb)
Supplementary material 1 (DOC 2393 kb)

References

  1. 1.
    T. Tsubogo, T. Ishiwata, S. Kobayashi, Angew. Chem. Int. Ed. 52, 6590–6604 (2013)CrossRefGoogle Scholar
  2. 2.
    A. Lumbroso, M.L. Cooke, B. Breit, Angew. Chem. Int. Ed. 52, 1890–1932 (2013)CrossRefGoogle Scholar
  3. 3.
    L. Pu, H. Yu, Chem. Rev. 101, 757–824 (2001)CrossRefGoogle Scholar
  4. 4.
    M. Fontes, X. Verdaguer, L. Solà, A. Vidal-Ferran, K.S. Reddy, A. Riera, M.A. Pericàs, Org. Lett. 4, 2381–2383 (2002)CrossRefGoogle Scholar
  5. 5.
    A.L. Braga, M.W. Paixão, D.S. Lüdtke, C.C. Silveira, O.E.D. Rodrigues, Org. Lett. 5, 2635–2638 (2003)CrossRefGoogle Scholar
  6. 6.
    H. Kotsuki, M. Wakao, H. Hayakawa, T. Shimanouchi, M. Shiro, J. Org. Chem. 61, 8915–8920 (1996)CrossRefGoogle Scholar
  7. 7.
    T. Mino, A. Suzuki, M. Yamashita, S. Narita, Y. Shirae, M. Sakamoto, T. Fujita, J. Organomet. Chem. 691, 4297–4303 (2006)CrossRefGoogle Scholar
  8. 8.
    F. Faigl, Z. Erdélyi, S. Deák, M. Nyerges, B. Mátravölgyi, Tetrahedron Lett. 55, 6891–6894 (2014)CrossRefGoogle Scholar
  9. 9.
    F. Li, H. Huang, H. Zong, G. Bian, L. Song, Tetrahedron Lett. 56, 2071–2076 (2015)CrossRefGoogle Scholar
  10. 10.
    H. Du, K. Ding, Org. Lett. 5, 1091–1093 (2003)CrossRefGoogle Scholar
  11. 11.
    F. Jiang, B. Liu, Z. Dong, J. Li, J. Organomet. Chem. 692, 4377–4380 (2007)CrossRefGoogle Scholar
  12. 12.
    K. Soai, M. Watanabe, A. Yamamoto, J. Org. Chem. 55, 4832–4835 (1990)CrossRefGoogle Scholar
  13. 13.
    T. Kawasaki, Y. Araki, K. Hatase, K. Suzuki, A. Matsumoto, T. Yokoi, Y. Kubota, T. Tatsumi, K. Soai, Chem. Commun. 51, 8742–8744 (2015)CrossRefGoogle Scholar
  14. 14.
    S. Jarzyński, M. Rachwalski, A.M. Pieczonka, Z. Wujkowska, S. Leśniak, Tetrahedron Asymmetry 26, 924–927 (2015)CrossRefGoogle Scholar
  15. 15.
    V. Angamuthu, D.-F. Tai, Appl. Catal. A Gen. 506, 254–260 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Heidlindemann, G. Rulli, A. Berkessel, W. Hummel, H. Gröger, ACS Catal. 4, 1099–1103 (2014)CrossRefGoogle Scholar
  17. 17.
    T.T. Adint, C.R. Landis, J. Am. Chem. Soc. 136, 7943–7953 (2014)CrossRefGoogle Scholar
  18. 18.
    Y.-C. Chen, T.-F. Wu, L. Jiang, J.-G. Deng, H. Liu, J. Zhu, Y.-Z. Jiang, J. Org. Chem. 70, 1006–1010 (2005)CrossRefGoogle Scholar
  19. 19.
    G. Chollet, F. Rodriguez, E. Schulz, Org. Lett. 8, 539–542 (2006)CrossRefGoogle Scholar
  20. 20.
    M. Moliner, A. Corma, Chem. Mater. 24, 4371–4375 (2012)CrossRefGoogle Scholar
  21. 21.
    C.I. Fernandes, M.S. Saraiva, T.G. Nunes, P.D. Vaz, C.D. Nunes, J. Catal. 309, 21–32 (2014)CrossRefGoogle Scholar
  22. 22.
    K. Soai, S. Niwa, Chem. Rev. 92, 833–856 (1992)CrossRefGoogle Scholar
  23. 23.
    L. Ramos, L.M. Hernández, M.J. González, Anal. Chem. 71, 70–77 (1999)CrossRefGoogle Scholar
  24. 24.
    J. Zhang, L. Li, Y. Li, G. Zhang, A. Zheng, J. Zhang, Y. Sun, Catal. Lett. 145, 1148–1161 (2015)CrossRefGoogle Scholar
  25. 25.
    T. Lu, X. Yao, M.G.Q. Lu, Y. He, J. Porous Mater. 17, 123–131 (2010)CrossRefGoogle Scholar
  26. 26.
    O. Pauvert, F. Fayon, A. Rakhmatullin, S. Krämer, M. Horvatić, D. Avignant, C. Berthier, M. Deschamps, D. Massiot, C. Bessada, Inorg. Chem. 48, 8709–8717 (2009)CrossRefGoogle Scholar
  27. 27.
    A. Ramanathan, H. Zhu, R. Maheswari, B. Subramaniam, Chem. Eng. J. 278, 113–121 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Zhu, G. Chuah, S. Jaenicke, J. Catal. 227, 1–10 (2004)CrossRefGoogle Scholar
  29. 29.
    P. Kaminski, M. Ziolek, J. Catal. 312, 249–262 (2014)CrossRefGoogle Scholar
  30. 30.
    D. Nedumaran, A. Pandurangan, Microporous Mesoporous Mater. 169, 25–34 (2013)CrossRefGoogle Scholar
  31. 31.
    G.R. Pettit, S.B. Singh, D.L. Herald, P. Lloyd-Williams, D. Kantoci, D.D. Burkett, J. Barkóczy, F. Hogan, T.R. Wardlaw, J. Org. Chem. 59, 6287–6295 (1994)CrossRefGoogle Scholar
  32. 32.
    Z. Guo, Y. Du, Y. Chen, S.-C. Ng, Y. Yang, J. Phys. Chem. C 114, 14353–14361 (2010)CrossRefGoogle Scholar
  33. 33.
    Y. Han, L. Zhao, J.Y. Ying, Adv. Mater. 19, 2454–2459 (2007)CrossRefGoogle Scholar
  34. 34.
    H. Zhang, Y. Zhang, C. Li, J. Catal. 238, 369–381 (2006)CrossRefGoogle Scholar
  35. 35.
    M.I. Coahuila Hernández, M.A. García Sánchez, A.M. Soto Estrada, A. Campero, J. Solgel Sci. Technol. 37, 117–120 (2006)CrossRefGoogle Scholar
  36. 36.
    A.I. Bortun, L.N. Bortun, A. Clearfield, Chem. Mater. 9, 1854–1864 (1997)CrossRefGoogle Scholar
  37. 37.
    A. Lazar, P. Sharma, A.P. Singh, Microporous Mesoporous Mater. 170, 331–339 (2013)CrossRefGoogle Scholar
  38. 38.
    Q. Pan, A. Ramanathan, W.K. Snavely, R.V. Chaudhari, B. Subramaniam, Ind. Eng. Chem. Res. 52, 15481–15487 (2013)CrossRefGoogle Scholar
  39. 39.
    K. Yu, Z. Gu, R. Ji, L.-L. Lou, F. Ding, C. Zhang, S. Liu, J. Catal. 252, 312–320 (2007)CrossRefGoogle Scholar
  40. 40.
    N. Hiyoshi, Appl. Catal. A Gen. 419–420, 164–169 (2012)CrossRefGoogle Scholar
  41. 41.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  42. 42.
    R. Fu, N. Yoshizawa, M.S. Dresselhaus, G. Dresselhaus, J.H. Satcher Jr., T.F. Baumann, Langmuir 18, 10100–10104 (2002)CrossRefGoogle Scholar
  43. 43.
    S.P. Chenakin, G. Melaet, R. Szukiewicz, N. Kruse, J. Catal. 312, 1–11 (2014)CrossRefGoogle Scholar
  44. 44.
    R.I. Kureshy, I. Ahmad, K. Pathak, N.H. Khan, S.H.R. Abdi, J.K. Prathap, R.V. Jasra, Chirality 19, 352–357 (2007)CrossRefGoogle Scholar
  45. 45.
    S.-W. Kang, D.-H. Ko, K.H. Kim, D.-C. Ha, Org. Lett. 5, 4517–4519 (2003)CrossRefGoogle Scholar
  46. 46.
    A. Osatiashtiani, A.F. Lee, M. Granollers, D.R. Brown, L. Olivi, G. Morales, J.A. Melero, K. Wilson, ACS Catal. 5, 4345–4352 (2015)CrossRefGoogle Scholar
  47. 47.
    L. Li, F. Guan, X. Li, C. Fan, A. Zheng, B. Huang, J. Zhang, Y. Sun, J. Mol. Catal. A Chem. 414, 167–176 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Benhua Huang
    • 1
  • Jie Wang
    • 2
  • Tao Yang
    • 1
  • Yu Li
    • 1
  • Donghua Zhang
    • 2
  • Aqun Zheng
    • 1
  • Yang Sun
    • 1
    Email author
  1. 1.Department of Applied Chemistry, School of ScienceXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.School of Materials and Chemical EngineeringXi’an Technological UniversityXi’anPeople’s Republic of China

Personalised recommendations