Advertisement

Journal of Porous Materials

, Volume 24, Issue 2, pp 469–476 | Cite as

A silica/polyvinyl alcohol membrane suitable for separating proteins

  • Sa Ran
  • Wenbiao Wu
Article

Abstract

Membrane separation at low temperatures is a favorable method for concentrating and purifying heat-sensitive biological molecules, for example, proteins. This results in that the production of an ultrafiltration membrane with long-term durability and low cost is receiving extensive attention. A new type of ultrafiltration membrane suitable for concentrating or separating proteins or macromolecules from small molecules such as salts or organic compounds is obtainable by directly mixing water glass solution with polyvinyl alcohol solution followed by soaking in aqueous H2SO4 solution. The molecular weight cut off of the ultrafiltration membrane was estimated to be >36,000 and <45,000 Da while its water permeability is reasonably high. The measured results of the critical mechanical properties, including tensile force, strength, length and elongation of the membrane indicated that its long-term durability should be good. Soaking the silica/polyvinyl alcohol membranes in 2 mol/L aqueous H2SO4 solution is very vital to improve the rejection rate of proteins investigated. The new and advanced preparation method of the membrane has a short, efficient and low cost operating process. The silica/polyvinyl alcohol membrane may also be applicable to the removal of microorganisms in water.

Keywords

SiO2 Water glass Ultrafiltration Performance Mechanical properties 

References

  1. 1.
    J.I. Boye, S. Aksay, S. Roufik, S. Ribéreau, M. Mondor, E. Farnworth, S.H. Rajamohamed, Food Res. Int. 43, 537–546 (2010)CrossRefGoogle Scholar
  2. 2.
    S.S. Fernández, C. Menéndez, S. Mucciarelli, A. Pérez Padilla, J. Sci. Food Agric. 87(10), 1850–1857 (2007)CrossRefGoogle Scholar
  3. 3.
    A.N. Rinaldoni, C.C. Tarazaga, M.E. Campderrós, A. Pérez Padilla, J. Food Eng. 92, 226–232 (2009)CrossRefGoogle Scholar
  4. 4.
    T.R. Noordman, T.H. Ketelaar, F. Donkers, J.A. Wesselingh, Chem. Eng. Sci. 57, 693–703 (2002)CrossRefGoogle Scholar
  5. 5.
    A. Saxena, V.K. Shahi, Ind. Eng. Chem. Res. 49(2), 780–789 (2010)CrossRefGoogle Scholar
  6. 6.
    H. Susantoa, H. Arafat, E.M.L. Janssena, M. Ulbrichta, Sep. Purif. Technol. 63, 558–565 (2008)CrossRefGoogle Scholar
  7. 7.
    P. Del Hoyo, M. Rendueles, M. Díaz, Meat Sci. 78, 522–528 (2008)CrossRefGoogle Scholar
  8. 8.
    P. Del Hoyo, F. Moure, M. Rendueles, M. Díaz, Meat Sci. 76, 402–410 (2007)CrossRefGoogle Scholar
  9. 9.
    T. Laura, R. Furlán, A. Pérez Padilla, M.E. Campderrós, Food Res. Int. 43(3), 788–796 (2010)CrossRefGoogle Scholar
  10. 10.
    L. Vandanjon, R. Johannsson, M. Derouiniot, P. Jaouen, P. Bourseau, J. Food Eng. 83, 581–589 (2007)CrossRefGoogle Scholar
  11. 11.
    Y. Li, A. Shahbazi, C.T. Kadzere, J. Food Eng. 75(4), 574–580 (2006)CrossRefGoogle Scholar
  12. 12.
    A. Muller, B. Chaufer, U. Merin, G. Daufin, Le Lait 83, 439–451 (2003)CrossRefGoogle Scholar
  13. 13.
    H. Roodink, T. Niewold, inventors, Method for preparing a blood plasma powder and animal feed thus obtained. WO Patent 030654. 2003 April 17Google Scholar
  14. 14.
    C.H. Muller, G.P. Agarwal, T. Melin, T. Wintgens, J. Membr. Sci. 227, 51–69 (2003)CrossRefGoogle Scholar
  15. 15.
    S. Dailloux, G. Djelveh, A. Peyron, C. Oulion, J. Food Eng. 55, 35–39 (2002)CrossRefGoogle Scholar
  16. 16.
    S.O. Fernández, J.A. Rodríguez, A. Pérez Padilla, Desalination 126, 95–100 (1999)CrossRefGoogle Scholar
  17. 17.
    R. Ghosh, Z.F. Cui, J. Membr. Sci. 139(1), 17–28 (1998)CrossRefGoogle Scholar
  18. 18.
    S. Najarian, B.J. Bellhouse, J. Membr. Sci. 114(2), 245–253 (1996)CrossRefGoogle Scholar
  19. 19.
    D. Belhocine, H. Grib, D. Abdessmed, Y. Comeau, N. Mameri, J. Membr. Sci. 142, 159–171 (1998)CrossRefGoogle Scholar
  20. 20.
    L. Millesime, C. Amiel, B. Chaufer, J. Membr. Sci. 89(3), 223–234 (1994)CrossRefGoogle Scholar
  21. 21.
    C. Yacou, S. Smart, J.C. Diniz da Costa, Energy Environ. Sci. 5, 5820–5832 (2012)CrossRefGoogle Scholar
  22. 22.
    D. Uhlmann, S. Smart, J.C. Diniz da Costa, J. Membr. Sci. 380, 48–54 (2011)CrossRefGoogle Scholar
  23. 23.
    T. Tsuru, R. Igi, M. Kanezashi, T. Yosioka, S. Fujisaki, Y. Iwamoto, AIChE J. 57, 618–629 (2011)CrossRefGoogle Scholar
  24. 24.
    R. Igi, T. Yoshioka, Y.H. Ikuhara, Y. Iwamoto, T. Tsuru, J. Am. Ceram. Soc. 91, 2975–2981 (2008)CrossRefGoogle Scholar
  25. 25.
    V. Boffa, J.E. ten Elshof, D.H.A. Blank, Microporous Mesoporous Mater. 100, 173–182 (2007)CrossRefGoogle Scholar
  26. 26.
    C. Liu, J. Wang, Z. Rong, J. Membr. Sci. 287, 6–8 (2007)CrossRefGoogle Scholar
  27. 27.
    L. Huang, S. Kawi, K. Hidajat, S.C. Ng, Microporous Mesoporous Mater. 88, 254–265 (2006)CrossRefGoogle Scholar
  28. 28.
    S. Higgins, R. Kennard, N. Hill, J. Dicarlo, W.J. DeSisto, J. Membr. Sci. 279, 669–674 (2006)CrossRefGoogle Scholar
  29. 29.
    H.M. Alsyouri, D. Li, Y.S. Lin, Z. Ye, S.P. Zhu, J. Membr. Sci. 282, 266–275 (2006)CrossRefGoogle Scholar
  30. 30.
    C. Boissiere, M.A.U. Martines, P.J. Kooyman, T.R. de Kruijff, A. Larbot, E. Prouzet, Chem. Mater. 15, 460–463 (2003)CrossRefGoogle Scholar
  31. 31.
    G. Xomeritakis, C.M. Braunbarth, B. Smarsly, N. Liu, R. Köhn, Z. Klipowicz, C.J. Brinker, Microporous Mesoporous Mater. 66, 91–101 (2003)CrossRefGoogle Scholar
  32. 32.
    Y.S. Kim, S.M. Yang, Adv. Mater. 14, 1078–1081 (2002)CrossRefGoogle Scholar
  33. 33.
    K. Nakagawa, H. Matsuyamaa, T. Makib, M. Teramoto, N. Kubota, Sep. Purif. Technol. 44, 145–151 (2005)CrossRefGoogle Scholar
  34. 34.
    L.C. Viannade Aguiar, A. de Souza Gomes, G.M. de Ramos Filho, Polímeros 24(6), 689–693 (2014)CrossRefGoogle Scholar
  35. 35.
    J.M. Dodda, J.M.P. Bělský, J. Chmelař, T. Remiš, K. Smolná, M. Tomáš, L. Kullová, J. Kadlec, J. Mater. Sci. 50(19), 6477–6490 (2015)CrossRefGoogle Scholar
  36. 36.
    C.J. Fenk, N. Kaufman, D.G. Gerbig, J. Chem. Educ. 84(10), 1676–1678 (2007)CrossRefGoogle Scholar
  37. 37.
    G. Silkstone, M.T. Wilson, PLoS One 11(3), e0148369 (2016). doi: 10.1371/journal.pone.0148369 CrossRefGoogle Scholar
  38. 38.
    National Standard of the People’s Republic of China. Technical terms of membrane separation. GB/T 20103-2006, jointly published by General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of the People’s Republic of ChinaGoogle Scholar
  39. 39.
    F.I. Hai, T. Riley, S. Shawkat, S.F. Magram, K. Yamamoto, Water 6, 3603–3630 (2014)CrossRefGoogle Scholar
  40. 40.
    H.P. Erickson, Biol. Proc. Online 11(1), 32–51 (2009)CrossRefGoogle Scholar
  41. 41.
    R.M. Boom, I.M. Wienk, T. Van den Boomgarrd, C.A. Smolders, J. Membr. Sci. 73, 277–292 (1992)CrossRefGoogle Scholar
  42. 42.
    H. Yuan, J. Ren, L. Cheng, L. Shen, J. Appl. Polym. Sci. 130(6), 4066–4074 (2013)Google Scholar
  43. 43.
    E. Eren, A. Sarihan, B. Eren, H. Gumus, F.O. Kocak, J. Membr. Sci. 475, 1–8 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Food ScienceSouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations