Journal of Porous Materials

, Volume 24, Issue 2, pp 373–380 | Cite as

A composite monolithic column fabricated with functionalized nanodiamond and its application in separation of small molecules

  • Aile Wei
  • Peipei Dong
  • Beijiao Cui
  • Fengqing Wang
  • Haiyan Liu
  • Ligai Bai
  • Hongyuan Yan
Article
  • 137 Downloads

Abstract

A nanodiamond-based composite monolithic column was fabricated by redox initiation for high performance liquid chromatography (HPLC). The functionalized nanodiamond was modified via Fenton Reagent and 3-methacryl oxypropyltrimethoxysilane (KH-570). After being optimized conditions, composite monolithic columns were prepared with functionalized ND (f-ND) as functional monomer, dipentaerythritol hexaacrylate and ethylene dimethacrylate as crosslinking agents, dodecanol and 1-propanol as co-porogens, dibenzoyl peroxide and N,N-dimethyl aniline as initiators. Characterizations of the resulting nanocomposite, including fourier transform infrared spectra, scanning electron microscopy images, thermal gravimetric analysis, mercury intrusion porosimetry and nitrogen adsorption–desorption isotherm were all carried out in detail. Bigger specific surface area, better mechanical stability, thermostability property and orderliness skeleton structure with flow-through channels and macroporous of the composite monolithic column was exhibited than those columns without f-ND added. At last, the nanodiamond-based composite monolithic column was used to separate a series of small molecules including acidic, alkaline and neutral compounds with good resolution and reproducibility in HPLC.

Keywords

Nanodiamond Composite Polymer monolithic column Separation of small molecules High performance liquid chromatography 

Notes

Acknowledgments

The study was funded by the National Natural Science Foundation of China (No. 21175031, 21575033, 21505030), the Natural Science Foundation of Hebei Province (No. B2013201082, B2015201024) and the Natural Science Foundation of Hebei University (No. 2014-05).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    D. Bitounis, H. Ali-Boucetta, B.H. Hong, D.-H. Min, Adv. Mater. 25, 2258 (2013)CrossRefGoogle Scholar
  2. 2.
    L. Lacerda, A. Bianco, M. Prato, K. Kostarelos, Adv. Drug Deliv. Rev. 58, 1460 (2006)CrossRefGoogle Scholar
  3. 3.
    Y. Li, Z. Zhu, J. Yu, B. Ding, ACS Appl. Mater. Interfaces 7, 13538 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Krueger, J. Mater. Chem. 18, 1485 (2008)CrossRefGoogle Scholar
  5. 5.
    V.N. Mochalin, L. Neitzel, B.J.M. Etzold, A. Peterson, G. Palmese, Y. Gogotsi, ACS Nano 5, 7494 (2011)CrossRefGoogle Scholar
  6. 6.
    P. Badziag, W.S. Verwoerd, W.P. Ellis, N.R. Greiner, Nature 343, 244 (1990)CrossRefGoogle Scholar
  7. 7.
    A. Krueger, Chem. Eur. J. 14, 1382 (2008)CrossRefGoogle Scholar
  8. 8.
    A. Krueger, J. Mater. Chem. 21, 12571 (2011)CrossRefGoogle Scholar
  9. 9.
    V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, Nat. Nanotechnol. 7, 11 (2012)CrossRefGoogle Scholar
  10. 10.
    R. Kaur, I. Badea, Int. J. Nanomed. 8, 203 (2013)CrossRefGoogle Scholar
  11. 11.
    M.A.A. Mamun, Y. Soutome, Y. Kasahara, Q. Meng, S. Akasaka, A. Fujimori, ACS Appl. Mater. Interfaces 17792, 7 (2015)Google Scholar
  12. 12.
    T. Jiang, K. Xu, Carbon 33, 1663 (1995)CrossRefGoogle Scholar
  13. 13.
    V. Mochalin, S. Osswald, Y. Gogotsi, Chem. Mater. 21, 273 (2009)CrossRefGoogle Scholar
  14. 14.
    A. Krueger, D. Lang, Adv. Funct. Mater. 22, 890 (2012)CrossRefGoogle Scholar
  15. 15.
    K.D. Behler, A. Stravato, V. Mochalin, G. Korneva, G. Yushin, Y. Gogotsi, ACS Nano 3, 363 (2009)CrossRefGoogle Scholar
  16. 16.
    C. Lin, C. Lin, H. Chang, M. Su, J. Phys. Chem. B 119, 7704 (2015)CrossRefGoogle Scholar
  17. 17.
    R. Wu, L. Hu, F. Wang, M. Ye, H. Zou, J. Chromatogr. A 1184, 369 (2008)CrossRefGoogle Scholar
  18. 18.
    E.F. Hilder, F. Svec, J.M.J. Fréchet, J. Chromatogr. A 1044, 3 (2004)CrossRefGoogle Scholar
  19. 19.
    M. Dong, M. Wu, F. Wang, H. Qin, G. Han, J. Dong, R. Wu, M. Ye, Z. Liu, H. Zou, Anal. Chem. 82, 2907 (2010)CrossRefGoogle Scholar
  20. 20.
    L. Bai, H. Liu, Y. Liu, X. Zhang, G. Yang, Z. Ma, J. Chromatogr. A 1218, 100 (2011)CrossRefGoogle Scholar
  21. 21.
    Q. Gai, F. Qu, Z. Liu, R. Dai, Y. Zhang, J. Chromatogr. A 1217, 5035 (2010)CrossRefGoogle Scholar
  22. 22.
    M. Ding, R. Zheng, H. Peng, J. Anal. Chem. 37, 395 (2009)Google Scholar
  23. 23.
    P.A. Bristow, J.H. Knox, Chromatographia 10, 279 (1977)CrossRefGoogle Scholar
  24. 24.
    P.S. Nikam, L.N. Shirsat, M. Hasan, J. Chem. Eng. Data 43, 732 (1998)CrossRefGoogle Scholar
  25. 25.
    G. Ping, L. Zhang, L. Zhang, W. Zhang, P. Schmitt-Kopplin, A. Kettrup, Y. Zhang, J. Chromatogr. A 1035, 265 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical SciencesHebei UniversityBaodingChina
  2. 2.Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of EducationBaodingChina

Personalised recommendations