Zeolite-Y encapsulated VO[2-(2′-hydroxyphenyl)benzimidazole] complex: investigation of its catalytic activity towards oxidation of organic substrates

Abstract

Zeolite-Y encapsulated VO(IV)2-(2′-hydroxyphenyl)benzimidazole (ohpbmzl) was synthesized by flexible ligand approach and characterized using various physico-chemical techniques such as elemental analysis, XRD, inductively coupled plasma-atomic emission, fourier transform infrared spectroscopy, UV–vis-diffuse reflectance and electron paramagnetic resonance spectroscopy, thermogravimetric analysis, BET surface area and cyclic voltammetry (CV). Based on the results a square pyramidal structure was suggested for the encapsulated complex. Shift in UV absorbance to higher wavelength and variations in the redox potential values compared to the non-encapsulated complex in CV confirmed the successful encapsulation of the complex in the zeolite matrix. The catalytic efficacy was investigated towards oxidation of phenol, styrene, cyclohexane and ethyl benzene in acetonitrile using H2O2 as oxidant. Influence of reaction parameters like catalyst and substrate concentration, substrate/H2O2 molar ratio, and temperature were investigated to optimize the reaction conditions for maximum substrate conversion and selectivity towards desired products using the encapsulated complex. The catalytic activity was compared with vanadyl exchanged zeolite-Y (VO-Y) and non-encapsulated complex. The encapsulated complex retained its stability up to 3 runs as confirmed by recycling studies. Mechanistic pathways were proposed for all the probe reactions.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

References

  1. 1.

    S.J.J. Titinchi, G.V. Willingh, H.S. Abbo, R. Prasad, Catal. Sci. Technol. 5, 325–338 (2015)

    CAS  Article  Google Scholar 

  2. 2.

    K.K. Bania, R.C. Deka, J. Phys. Chem. C 117(22), 11663–11678 (2013)

    CAS  Article  Google Scholar 

  3. 3.

    C.K. Modi, B.G. Gade, J.A. Chudasama, D.K. Parmar, H.D. Nakum, A.L. Patel, Spectrochem. Acta Mol. Biomol. Spectrosc. 140, 174–184 (2015)

    CAS  Article  Google Scholar 

  4. 4.

    D.C. Crans, J.J. Smee, E. Gaidamauskas, L. Yang, Chem. Rev. 104, 849–902 (2004)

    CAS  Article  Google Scholar 

  5. 5.

    V. Conte, B. Floris, Inorg. Chim. Acta 363, 1935–1946 (2010)

    CAS  Article  Google Scholar 

  6. 6.

    G. Licini, V. Conte, A. Coletti, M. Mba, C. Zonta, Coord. Chem. Rev. 255(19–20), 2345–2357 (2011)

    CAS  Article  Google Scholar 

  7. 7.

    T. Joseph, D. Srinivas, C.S. Gopinath, S.B. Halligudi, Catal. Lett. 83(3–4), 209–214 (2002)

    CAS  Article  Google Scholar 

  8. 8.

    G. Barak, Y. Sasson, J. Chem. Soc. Chem. Commun. (16), 1266–1267 (1987)

  9. 9.

    N.S. Patil, B.S. Uphade, P. Jana, S.K. Bharagava, V.R. Choudhary, J. Catal. 223(1), 236–239 (2004)

    CAS  Article  Google Scholar 

  10. 10.

    L. Nie, K.K. Xin, W.S. Li, X.P. Zhou, Catal. Commun. 8(3), 488–492 (2007)

    CAS  Article  Google Scholar 

  11. 11.

    D.M. Gao, Q.M. Gao, Catal. Commun. 8(4), 681–685 (2007)

    CAS  Article  Google Scholar 

  12. 12.

    M. Hüdlicky, Oxidations in Organic Chemistry (American Chemical Society, Washington, 1990)

    Google Scholar 

  13. 13.

    J.E. Bäckvall (ed.), Modern Oxidation Methods (Wiley-VCH, Weinheim, 2004)

    Google Scholar 

  14. 14.

    R.A. Sheldon, R.A. Van Santen, Catalytic Axidation Applications (World Scientific Publishing, Singapore, 1995)

    Book  Google Scholar 

  15. 15.

    A.K. Suresh, M.M. Sharma, T. Sridhar, Ind. Eng. Chem. Res. 39(11), 3958–3997 (2000)

    CAS  Article  Google Scholar 

  16. 16.

    R. Alcántara, L. Canoira, P.G. Joao, J.M. Santos, I. Vázquez, Appl. Catal. A: Gen. 203(2), 259–268 (2000)

    Article  Google Scholar 

  17. 17.

    K. Warangkana, T. Wimonrat, J. Met. Mater. Miner. 20(2), 29–34 (2010)

    Google Scholar 

  18. 18.

    M.R. Maurya, M. Kumar, U. Kumar, J. Mol. Catal. A: Chem. 273(1–2), 133–143 (2007)

    CAS  Article  Google Scholar 

  19. 19.

    H. Klein, C. Kirschhock, H. Fuess, J. Phys. Chem. 98(47), 12345–12360 (1994)

    CAS  Article  Google Scholar 

  20. 20.

    K.K. Bania, R.C. Deka, J. Phys. Chem. C 116(27), 14295–14310 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    W.H. Quayle, J.H. Lunsford, Inorg. Chem. 21(1), 97–103 (1982)

    CAS  Article  Google Scholar 

  22. 22.

    W.H. Quayle, G. Peeters, G.L.D. Roy, E.F. Vansant, J.H. Lunsford, Inorg. Chem. 21(6), 2226–2231 (1982)

    CAS  Article  Google Scholar 

  23. 23.

    M.S. Niasari, Z. Salimi, M. Bazarganipour, F. Davar, Inorg. Chim. Acta 362, 3715–3724 (2009)

    Article  Google Scholar 

  24. 24.

    A. Sarkara, S. Pal, Inorg. Chim. Acta 361, 2296–2304 (2008)

    Article  Google Scholar 

  25. 25.

    M.S. Niasari, Inorg. Chim. Acta 362, 2159–2166 (2008)

    Article  Google Scholar 

  26. 26.

    M. Tsuchimoto, G. Hoshina, N. Yoshioka, J. Solid State Chem. 153(1), 9–15 (2000)

    CAS  Article  Google Scholar 

  27. 27.

    J.C. Patrick, L.I. Sara, C.L. Sarah, J. Phys. Chem. A 105(18), 4563–4573 (2001)

    Article  Google Scholar 

  28. 28.

    S.S. Dodwad, R.S. Dhamnaskar, P.S. Prabhu, Polyhedron 8(13–14), 1748–1750 (1989)

    CAS  Article  Google Scholar 

  29. 29.

    S.N. Rao, D.D. Mishra, R.C. Maurya, N.R. Nageswara, Polyhedron 16(11), 1825–1829 (1997)

    CAS  Article  Google Scholar 

  30. 30.

    L.J. Boucher, T.F. Yen, Inorg. Chem. 8(3), 689–692 (1969)

    CAS  Article  Google Scholar 

  31. 31.

    K.K. Bania, R.C. Deka, J. Phys. Chem. C 115(19), 9601–9607 (2011)

    CAS  Article  Google Scholar 

  32. 32.

    P.J. Carl, S.C. Larsen, J. Phys. Chem. B. 104(28), 6568–6575 (2000)

    CAS  Article  Google Scholar 

  33. 33.

    B.R. Shaw, K.E. Creasy, C.J. Lanczycki, J.A. Sargeant, M. Tirhado, J. Electrochem. Soc. 135(4), 869–876 (1988)

    CAS  Article  Google Scholar 

  34. 34.

    R. Zhang, J. Ma, W. Wang, B. Wang, R. Li, J. Electroanal. Chem. 643(1–2), 31–38 (2010)

    CAS  Article  Google Scholar 

  35. 35.

    G.J. Alette, Ligtenbarg, H. Ronald, L.F. Ben, Coord. Chem. Rev. 237(1-2), 89–101 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Department of Chemistry, Bangalore University for providing instrumentation facilities and Prof. P. V. Kamath for cyclic voltammetric instrumentation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Gayathri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shilpa, E.R., Gayathri, V. & Kiran, G.K. Zeolite-Y encapsulated VO[2-(2′-hydroxyphenyl)benzimidazole] complex: investigation of its catalytic activity towards oxidation of organic substrates. J Porous Mater 24, 275–290 (2017). https://doi.org/10.1007/s10934-016-0261-5

Download citation

Keywords

  • Zeolite encapsulated vanadium complex
  • Electrochemical studies
  • Oxidation of organic compounds
  • H2O2