Abstract
In this research, Plackett–Burman experimental design was used as a screening method to investigate seven processing factors in the preparation of new polyethersulfone based porous nanocomposite membrane. Polymer concentration, nanoparticle type, nanoparticle concentration, solvent type, solution mixing time, evaporation time, and annealing temperature are variables that were evaluated to fabricate mixed matrix membranes using the evaporation phase inversion method for gas separation. According to obtained results, polymer concentration, nanoparticle concentration, solution mixing time, and evaporation time processing factors had significant effects on gas permeation. In addition, the nanoparticle type, nanoparticle concentration, and polymer concentration had substantial effects on membrane selectivity. From analysis of variance, it was found that the model used for membrane gas permeability and membrane selectivity as response values were more reliable within spaced levels. Scanning electron microscope, gas permeation experiments and statistical analysis showed that polymer concentration, nanoparticle type, nanoparticle loading and evaporation time significantly affected the final membrane morphologies and performances. According to this study, trade-off limitation between gas permeability and membrane selectivity could be eliminated by identifying the effective fabrication parameters.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Y.K. Kim, H.B. Park, Y.M. Lee, Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties. J. Membr. Sci. 243, 9–17 (2004)
P.C.Y. Uchytil, R. Petrychkovych, Y.C. Lai, K. Friess, M. Sipek, M.M. Reddya, S.Y. Suen, A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes. Sep. Purif. Technol. 92, 57–63 (2012)
L. Ge, Z. Zhu, V. Rudolph, Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane. Sep. Purif. Technol. 78, 76–82 (2011)
T.S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32, 483–507 (2007)
A.F. Ismail, T.D. Kusworo, A. Mustafa, Enhanced gas permeation performance of polyethersulfone mixed matrix hollow fiber membranes using novel Dynasylan Ameo silane agent. J. Membr. Sci. 319, 306–312 (2008)
Mallikarjunagouda B. Patil, Sangamesh A. Patil, Ravindra S. Veerapur, Tejraj M. Aminabhavi, Novel poly(vinyl alcohol)-tetraethoxysilane hybrid matrix membranes as oxygen barriers. J. Appl. Polym. Sci. 104, 273–278 (2007)
S. Sridhar, B. Smitha, M. Ramakrishna, T.M. Aminabhavi, Modified poly(phenylene oxide) membranes for the separation of carbon dioxide from methane. J. Membr. Sci. 280, 202–209 (2006)
S. Sridhar, T.M. Aminabhavi, S.J. Mayor, M. Ramakrishna, Permeation of carbon dioxide and methane gases through novel silver-incorporated thin film composite pebax membranes. Ind. Eng. Chem. Res. 46, 8144–8151 (2007)
Y. Li, T.S. Chung, C. Cao, S. Kulprathipanja, The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. J. Membr. Sci. 260, 45–55 (2005)
Y. Li, T.S. Chung, S. Kulprathipanja, Novel Ag+-Zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity. AIChE J. 53, 3 (2007)
E. Karatay, H. Kalıpçılar, L. Yılmaz, Preparation and performance assessment of binary and ternary PES-SAPO 34-HMA based gas separation membranes. J. Membr. Sci. 364, 75–81 (2010)
T.D. Kusworo, A.F. Ismail, A. Mustafa, Application of activated carbon mixed matrix membrane for oxygen purification. Int. J. Sci. Eng. 1(1), 21–24 (2010)
A.F. Ismail, N.H. Rahim, A. Mustafa, T. Matsuura, B.C. Ng, S. Abdullah, S.A. Hashemifard, Gas separation performance of polyethersulfone/multi-walled carbon nanotubes mixed matrix membranes. Sep. Purif. Technol. 80, 20–31 (2011)
B.S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on membrane fabrication: structure, properties and performance relationship. Desalination 326, 77–95 (2013)
E. Drioli, L. Giorno, Membrane operations: innovative separations and transformations (Wiley-VCH, Germany, 2009)
M. Mulder, Basic principles of membrane technology (Kluwer, Dordrecht, 1996)
S. Sridhar, R. Suryamurali, B. Smitha, T.M. Aminabhavi, Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation. Colloids Surf. A Physicochem. Eng. Asp. 297, 267–274 (2007)
S. Sridhar, R.S. Veerapur, M.B. Patil, K.B. Gudasi, T.M. Aminabhavi, Matrimid polyimide membranes for the separation of carbon dioxide from methane. J. Appl. Polym. Sci. 106, 1585–1594 (2007)
C. Li, H. Shao, S. Zhong, Preparation technology of organic–inorganic hybrid membrane. Huxue Jinzhan 16, 83–89 (2003)
R. Stephen, C. Ranganathaiah, S. Varghese, K. Joseph, S. Thomas, Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer 47, 858–870 (2006)
S.D. Bhat, B.V.K. Naidu, G.V. Shanbhag, S.B. Halligudi, M. Sairam, T.M. Aminabhavi, Mesoporous molecular sieve (MCM-41)-filled sodium alginate hybrid nanocomposite membranes for pervaporation separation of water–isopropanol mixtures. Sep. Purif. Technol. 49, 56–63 (2006)
P. Pandey, R.S. Chauhan, Membranes for gas separation. Prog. Polym. Sci. 26, 853–893 (2001)
J.L. Chau, S.S. Wang, C.L. Guo, H. Wei, T.C. Lien, Pilot production of polysulfone hollow fiber for ultrafiltration using orthogonal array experimentation. Ind. Chem. Res. 34, 813–881 (1995)
A. Idris, A.F. Ismail, M.Y. Noordin, S.J. Shilton, Optimization of cellulose acetate hollow fiber reverse osmosis membrane production using Taguchi method. J. Membr. Sci. 205, 223 (2002)
M. Bulut, L.E.M. Gevers, J.S. Paul, I.F.J. Vankelecom, P.A. Jacobs, Directed development of high-performance membranes via high-throughput and combinatorial strategies. J. Comb. Chem. 28, 168–173 (2006)
X. Wang, X. Wang, L. Zhang, Q. An, H. Chen, Morphology and formation mechanism of poly (vinylidene fluoride) membranes prepared with immerse precipitation: effect of dissolving temperature. J. Macromol. Sci. Part B Phys. 48, 696–709 (2009)
A. Rahimpour, S.S. Madaeni, M. Amirinejad, Y. Mansourpanah, S. Zereshki, The effect of heat treatment of PES and PVDF ultrafiltration membranes on morphology and performance for milk filtration. J. Membr. Sci. 330, 189–204 (2009)
M.S.E. Saljoughi, T. Mohammadi, Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes. J. Membr. Sci. 326, 627–634 (2009)
P. Wang, Z. Wang, Z. Wu, Insights into the effect of preparation variables on morphology and performance of polyacrylonitrile membranes using Plackett–Burman design experiments. Chem. Eng. J. 193–194, 50–58 (2012)
A. Akbari, R. Yegani, Study on the impact of polymer concentration and coagulation bath temperature on the porosity of polyethylene membranes fabricated via tips method. J. Membr. Sep. Technol. 1, 100–107 (2012)
E. Shokri, R. Yegani, Full-factorial experimental design to determine the impacts of influential parameters on the porosity and mechanical strength of LLDEP microporous membrane fabricated via thermally induced phase separation method. J. Membr. Sep. Technol. 1, 43–51 (2012)
S.Y. Kazemi, A.S. Hamidi, J. Zolgharnein, M.M. Lakouraj, Experimental design as an optimization approach for fabrication a new selective sensor for thallium(i) based on calix[6]arene. J. Anal. Chem. 69, 646–655 (2014)
J. Ledesma, S. A. Bortolato, C. E. Boschetti, D. M. Martino, Optimization of environmentally benign polymers based on thymine and polyvinyl sulfonate using Placket–Burman design and surface response, Hindawi Publishing Corporation. J. Chem. (2013) Article ID 947137
N.J. Miller, N.C. Miller, Statistics and chemometrics for analytical chemistry, chapter 7, 5th edn. (Prentice Hall, Upper Saddle River, 2005)
D.B. Hibbert, Experimental design in chromatography: a tutorial review. J. Chromatogr. A 910, 2–13 (2012)
J. Zhou, X. Yu, C. Ding, Z. Wang, Q. Zhou, H. Pao, W. Cai, Optimization of phenol degradation by Candida tropicalis Z-04 using Plackett–Burman design and response surface methodology. J. Environ. Sci. 23(1), 22–30 (2011)
X. Li, J. Ouyang, Y. Xu, M. Chen, X.Y. Song, Q. Yong, S.Y. Yu, Optimization of culture conditions for production of yeast biomass using bamboo wastewater by response surface methodology. Bioresour. Technol. 100, 3613–3617 (2009)
R.S. Liu, Y.J. Tang, Tuber melanosporum fermentation medium optimization by Plackett–Burman design coupled with Draper-Lin small composite design and desirability function. Bioresour. Technol. 101, 3139–3146 (2010)
M. Farrokhnia, M. Rashidzadeh, A. Safekordi, G. Khanbabaei, Fabrication and evaluation of nanocomposite membranes of polyethersulfone/α-alumina for hydrogen separation. Iran. Polym. J. 24, 171–183 (2015)
J. H. Petropoulos, Polymeric gas separation membranes, CRC Press, chapter 2. D. R. Paul, Yu. P. Yampolskii (Eds.), 1994
D.W. Van Krevelen, Properties of polymers, 3rd edn. (Elsevier, Amsterdam, 1990)
Q. Jun, Nanocomposite gas separation membrane, Ph.D. Thesis, The University of Hamburg, 2009
A. Singh-Ghosal, W.J. Koros, Energetic and entropic contributions to mobility selectivity in glassy polymers for gas separation membranes. Ind. Eng. Chem. Res. 38, 3647–3654 (1999)
K. Tanka, H. Kita, K. Okamoto, A. Nakamura, Y. Kusuki, Gas permeability and permselectivity in polyimides based on 3,3,4,4-biphenyltetracarboxylic dianhydride. J. Membr. Sci. 47, 203–215 (1989)
J.S. MaHattie, W.J. Koros, D.R. Paul, Effect of isopropylidene replacement on gas transport properties of polycarbonates. J. Polym. Sci. Polym. Phy. 29, 731–746 (1991)
S. Sridhar, T.M. Aminabhavi, M. Ramakrishna, Separation of binary mixtures of carbon dioxide and methane through sulfonated polycarbonate membranes. J. Appl. Polym. Sci. 105, 1749–1756 (2007)
J. Ahn, W.J. Chung, I. Pinnau, J. Song, N. Du, G.P. Robertson, M.D. Guiver, Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1). J. Membr. Sci. 346, 280–287 (2010)
J. Ahn, W.J. Chung, I. Pinnau, M.D. Guiver, Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Membr. Sci. 314, 123–133 (2008)
R.L. Plackett, J.P. Burman, The design of optimum multifactorial experiments. Biometrika 33, 305–325 (1964)
G. Clarizia, C. Algieri, E. Drioli, Filler-polymer combination: a route to modify gas transport properties of a polymeric membrane. Polymer 45, 5671–5681 (2004)
L. Jiesheng, W. Shaopeng, Z. Minhu, Z. Xiongzhen, C. Zhengang, Surface modification of silica and its compounding with polydimethylsiloxane matrix: interaction of modified silica filler with PDMS. Iran. Polym. J. 21, 583–589 (2012)
K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)
U. Cakal, L. Yilmaz, H. Kalipcilar, Effect of feed gas composition on the separation of CO2/CH4 mixtures by PES-SAPO 34-HMA mixed matrix membranes. J. Membr. Sci. 417–418, 45–51 (2012)
T.T. Moore, W.J. Koros, Non-ideal effects in organic-inorganic materials for gas separation membranes. J. Mol. Struct. 739(1), 87–98 (2005)
T.C. Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin, A.J. Hill, Ultrapermeable reverse-selective nanocomposite membranes. Science 296, 519–522 (2002)
R.J. Hill, Diffusive permeability, selectivity of nanocomposite membranes. Ind. Eng. Chem. Res. 45, 6890–6898 (2006)
S. Azari, M. Karimi, M.H. Kish, Structural properties of the poly (acrylonitrile) membrane prepared with different cast thicknesses. Ind. Eng. Chem. Res. 49, 2442–2448 (2010)
K.C. Khulbe, T. Matsuura, S.H. Noh, Effect of thickness of the PPO membranes on the surface morphology. J. Membr. Sci. 145, 243–251 (1998)
H.A. Tsai, Y.S. Ciou, C.C. Hu, K.R. Lee, D.G. Yu, J.Y. Lai, Heat-treatment effect on the morphology and pervaporation performances of asymmetric PAN hollow fiber membranes. J. Membr. Sci. 255, 33–47 (2005)
M. Safaei, R. Sarraf, M. Rashidzadeh, M. Manteghian, A Plackett–Burman design in hydrothermal synthesis of TiO2-derived nanotubes. J. Porous Mater. 17, 719–726 (2010)
R.A. Stowe, R.P. Mayer, Efficient screening of process variables. Ind. Eng. Chem. 58(2), 36–40 (1966)
Acknowledgments
The authors would like to thank Research Institute of Petroleum Industry (RIPI) for the financial support with the Grant Number of 83481047.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Farrokhnia, M., Safekordi, A., Rashidzadeh, M. et al. Development of porous nanocomposite membranes for gas separation by identifying the effective fabrication parameters with Plackett–Burman experimental design. J Porous Mater 23, 1279–1295 (2016). https://doi.org/10.1007/s10934-016-0187-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10934-016-0187-y