Skip to main content
Log in

Development of porous nanocomposite membranes for gas separation by identifying the effective fabrication parameters with Plackett–Burman experimental design

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this research, Plackett–Burman experimental design was used as a screening method to investigate seven processing factors in the preparation of new polyethersulfone based porous nanocomposite membrane. Polymer concentration, nanoparticle type, nanoparticle concentration, solvent type, solution mixing time, evaporation time, and annealing temperature are variables that were evaluated to fabricate mixed matrix membranes using the evaporation phase inversion method for gas separation. According to obtained results, polymer concentration, nanoparticle concentration, solution mixing time, and evaporation time processing factors had significant effects on gas permeation. In addition, the nanoparticle type, nanoparticle concentration, and polymer concentration had substantial effects on membrane selectivity. From analysis of variance, it was found that the model used for membrane gas permeability and membrane selectivity as response values were more reliable within spaced levels. Scanning electron microscope, gas permeation experiments and statistical analysis showed that polymer concentration, nanoparticle type, nanoparticle loading and evaporation time significantly affected the final membrane morphologies and performances. According to this study, trade-off limitation between gas permeability and membrane selectivity could be eliminated by identifying the effective fabrication parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Y.K. Kim, H.B. Park, Y.M. Lee, Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties. J. Membr. Sci. 243, 9–17 (2004)

    Article  CAS  Google Scholar 

  2. P.C.Y. Uchytil, R. Petrychkovych, Y.C. Lai, K. Friess, M. Sipek, M.M. Reddya, S.Y. Suen, A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes. Sep. Purif. Technol. 92, 57–63 (2012)

    Article  Google Scholar 

  3. L. Ge, Z. Zhu, V. Rudolph, Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane. Sep. Purif. Technol. 78, 76–82 (2011)

    Article  CAS  Google Scholar 

  4. T.S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32, 483–507 (2007)

    Article  CAS  Google Scholar 

  5. A.F. Ismail, T.D. Kusworo, A. Mustafa, Enhanced gas permeation performance of polyethersulfone mixed matrix hollow fiber membranes using novel Dynasylan Ameo silane agent. J. Membr. Sci. 319, 306–312 (2008)

    Article  CAS  Google Scholar 

  6. Mallikarjunagouda B. Patil, Sangamesh A. Patil, Ravindra S. Veerapur, Tejraj M. Aminabhavi, Novel poly(vinyl alcohol)-tetraethoxysilane hybrid matrix membranes as oxygen barriers. J. Appl. Polym. Sci. 104, 273–278 (2007)

    Article  CAS  Google Scholar 

  7. S. Sridhar, B. Smitha, M. Ramakrishna, T.M. Aminabhavi, Modified poly(phenylene oxide) membranes for the separation of carbon dioxide from methane. J. Membr. Sci. 280, 202–209 (2006)

    Article  CAS  Google Scholar 

  8. S. Sridhar, T.M. Aminabhavi, S.J. Mayor, M. Ramakrishna, Permeation of carbon dioxide and methane gases through novel silver-incorporated thin film composite pebax membranes. Ind. Eng. Chem. Res. 46, 8144–8151 (2007)

    Article  CAS  Google Scholar 

  9. Y. Li, T.S. Chung, C. Cao, S. Kulprathipanja, The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. J. Membr. Sci. 260, 45–55 (2005)

    Article  CAS  Google Scholar 

  10. Y. Li, T.S. Chung, S. Kulprathipanja, Novel Ag+-Zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity. AIChE J. 53, 3 (2007)

    Google Scholar 

  11. E. Karatay, H. Kalıpçılar, L. Yılmaz, Preparation and performance assessment of binary and ternary PES-SAPO 34-HMA based gas separation membranes. J. Membr. Sci. 364, 75–81 (2010)

    Article  CAS  Google Scholar 

  12. T.D. Kusworo, A.F. Ismail, A. Mustafa, Application of activated carbon mixed matrix membrane for oxygen purification. Int. J. Sci. Eng. 1(1), 21–24 (2010)

    Google Scholar 

  13. A.F. Ismail, N.H. Rahim, A. Mustafa, T. Matsuura, B.C. Ng, S. Abdullah, S.A. Hashemifard, Gas separation performance of polyethersulfone/multi-walled carbon nanotubes mixed matrix membranes. Sep. Purif. Technol. 80, 20–31 (2011)

    Article  CAS  Google Scholar 

  14. B.S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on membrane fabrication: structure, properties and performance relationship. Desalination 326, 77–95 (2013)

    Article  CAS  Google Scholar 

  15. E. Drioli, L. Giorno, Membrane operations: innovative separations and transformations (Wiley-VCH, Germany, 2009)

    Book  Google Scholar 

  16. M. Mulder, Basic principles of membrane technology (Kluwer, Dordrecht, 1996)

    Book  Google Scholar 

  17. S. Sridhar, R. Suryamurali, B. Smitha, T.M. Aminabhavi, Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation. Colloids Surf. A Physicochem. Eng. Asp. 297, 267–274 (2007)

    Article  CAS  Google Scholar 

  18. S. Sridhar, R.S. Veerapur, M.B. Patil, K.B. Gudasi, T.M. Aminabhavi, Matrimid polyimide membranes for the separation of carbon dioxide from methane. J. Appl. Polym. Sci. 106, 1585–1594 (2007)

    Article  CAS  Google Scholar 

  19. C. Li, H. Shao, S. Zhong, Preparation technology of organic–inorganic hybrid membrane. Huxue Jinzhan 16, 83–89 (2003)

    Google Scholar 

  20. R. Stephen, C. Ranganathaiah, S. Varghese, K. Joseph, S. Thomas, Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer 47, 858–870 (2006)

    Article  CAS  Google Scholar 

  21. S.D. Bhat, B.V.K. Naidu, G.V. Shanbhag, S.B. Halligudi, M. Sairam, T.M. Aminabhavi, Mesoporous molecular sieve (MCM-41)-filled sodium alginate hybrid nanocomposite membranes for pervaporation separation of water–isopropanol mixtures. Sep. Purif. Technol. 49, 56–63 (2006)

    Article  CAS  Google Scholar 

  22. P. Pandey, R.S. Chauhan, Membranes for gas separation. Prog. Polym. Sci. 26, 853–893 (2001)

    Article  CAS  Google Scholar 

  23. J.L. Chau, S.S. Wang, C.L. Guo, H. Wei, T.C. Lien, Pilot production of polysulfone hollow fiber for ultrafiltration using orthogonal array experimentation. Ind. Chem. Res. 34, 813–881 (1995)

    Article  Google Scholar 

  24. A. Idris, A.F. Ismail, M.Y. Noordin, S.J. Shilton, Optimization of cellulose acetate hollow fiber reverse osmosis membrane production using Taguchi method. J. Membr. Sci. 205, 223 (2002)

    Article  CAS  Google Scholar 

  25. M. Bulut, L.E.M. Gevers, J.S. Paul, I.F.J. Vankelecom, P.A. Jacobs, Directed development of high-performance membranes via high-throughput and combinatorial strategies. J. Comb. Chem. 28, 168–173 (2006)

    Article  Google Scholar 

  26. X. Wang, X. Wang, L. Zhang, Q. An, H. Chen, Morphology and formation mechanism of poly (vinylidene fluoride) membranes prepared with immerse precipitation: effect of dissolving temperature. J. Macromol. Sci. Part B Phys. 48, 696–709 (2009)

    Article  CAS  Google Scholar 

  27. A. Rahimpour, S.S. Madaeni, M. Amirinejad, Y. Mansourpanah, S. Zereshki, The effect of heat treatment of PES and PVDF ultrafiltration membranes on morphology and performance for milk filtration. J. Membr. Sci. 330, 189–204 (2009)

    Article  CAS  Google Scholar 

  28. M.S.E. Saljoughi, T. Mohammadi, Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes. J. Membr. Sci. 326, 627–634 (2009)

    Article  CAS  Google Scholar 

  29. P. Wang, Z. Wang, Z. Wu, Insights into the effect of preparation variables on morphology and performance of polyacrylonitrile membranes using Plackett–Burman design experiments. Chem. Eng. J. 193–194, 50–58 (2012)

    Article  Google Scholar 

  30. A. Akbari, R. Yegani, Study on the impact of polymer concentration and coagulation bath temperature on the porosity of polyethylene membranes fabricated via tips method. J. Membr. Sep. Technol. 1, 100–107 (2012)

    CAS  Google Scholar 

  31. E. Shokri, R. Yegani, Full-factorial experimental design to determine the impacts of influential parameters on the porosity and mechanical strength of LLDEP microporous membrane fabricated via thermally induced phase separation method. J. Membr. Sep. Technol. 1, 43–51 (2012)

    CAS  Google Scholar 

  32. S.Y. Kazemi, A.S. Hamidi, J. Zolgharnein, M.M. Lakouraj, Experimental design as an optimization approach for fabrication a new selective sensor for thallium(i) based on calix[6]arene. J. Anal. Chem. 69, 646–655 (2014)

    Article  CAS  Google Scholar 

  33. J. Ledesma, S. A. Bortolato, C. E. Boschetti, D. M. Martino, Optimization of environmentally benign polymers based on thymine and polyvinyl sulfonate using Placket–Burman design and surface response, Hindawi Publishing Corporation. J. Chem. (2013) Article ID 947137

  34. N.J. Miller, N.C. Miller, Statistics and chemometrics for analytical chemistry, chapter 7, 5th edn. (Prentice Hall, Upper Saddle River, 2005)

    Google Scholar 

  35. D.B. Hibbert, Experimental design in chromatography: a tutorial review. J. Chromatogr. A 910, 2–13 (2012)

    CAS  Google Scholar 

  36. J. Zhou, X. Yu, C. Ding, Z. Wang, Q. Zhou, H. Pao, W. Cai, Optimization of phenol degradation by Candida tropicalis Z-04 using Plackett–Burman design and response surface methodology. J. Environ. Sci. 23(1), 22–30 (2011)

    Article  CAS  Google Scholar 

  37. X. Li, J. Ouyang, Y. Xu, M. Chen, X.Y. Song, Q. Yong, S.Y. Yu, Optimization of culture conditions for production of yeast biomass using bamboo wastewater by response surface methodology. Bioresour. Technol. 100, 3613–3617 (2009)

    Article  CAS  Google Scholar 

  38. R.S. Liu, Y.J. Tang, Tuber melanosporum fermentation medium optimization by Plackett–Burman design coupled with Draper-Lin small composite design and desirability function. Bioresour. Technol. 101, 3139–3146 (2010)

    Article  CAS  Google Scholar 

  39. M. Farrokhnia, M. Rashidzadeh, A. Safekordi, G. Khanbabaei, Fabrication and evaluation of nanocomposite membranes of polyethersulfone/α-alumina for hydrogen separation. Iran. Polym. J. 24, 171–183 (2015)

    Article  CAS  Google Scholar 

  40. J. H. Petropoulos, Polymeric gas separation membranes, CRC Press, chapter 2. D. R. Paul, Yu. P. Yampolskii (Eds.), 1994

  41. D.W. Van Krevelen, Properties of polymers, 3rd edn. (Elsevier, Amsterdam, 1990)

    Google Scholar 

  42. Q. Jun, Nanocomposite gas separation membrane, Ph.D. Thesis, The University of Hamburg, 2009

  43. A. Singh-Ghosal, W.J. Koros, Energetic and entropic contributions to mobility selectivity in glassy polymers for gas separation membranes. Ind. Eng. Chem. Res. 38, 3647–3654 (1999)

    Article  CAS  Google Scholar 

  44. K. Tanka, H. Kita, K. Okamoto, A. Nakamura, Y. Kusuki, Gas permeability and permselectivity in polyimides based on 3,3,4,4-biphenyltetracarboxylic dianhydride. J. Membr. Sci. 47, 203–215 (1989)

    Article  Google Scholar 

  45. J.S. MaHattie, W.J. Koros, D.R. Paul, Effect of isopropylidene replacement on gas transport properties of polycarbonates. J. Polym. Sci. Polym. Phy. 29, 731–746 (1991)

    Article  Google Scholar 

  46. S. Sridhar, T.M. Aminabhavi, M. Ramakrishna, Separation of binary mixtures of carbon dioxide and methane through sulfonated polycarbonate membranes. J. Appl. Polym. Sci. 105, 1749–1756 (2007)

    Article  CAS  Google Scholar 

  47. J. Ahn, W.J. Chung, I. Pinnau, J. Song, N. Du, G.P. Robertson, M.D. Guiver, Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1). J. Membr. Sci. 346, 280–287 (2010)

    Article  CAS  Google Scholar 

  48. J. Ahn, W.J. Chung, I. Pinnau, M.D. Guiver, Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Membr. Sci. 314, 123–133 (2008)

    Article  CAS  Google Scholar 

  49. R.L. Plackett, J.P. Burman, The design of optimum multifactorial experiments. Biometrika 33, 305–325 (1964)

    Article  Google Scholar 

  50. G. Clarizia, C. Algieri, E. Drioli, Filler-polymer combination: a route to modify gas transport properties of a polymeric membrane. Polymer 45, 5671–5681 (2004)

    Article  CAS  Google Scholar 

  51. L. Jiesheng, W. Shaopeng, Z. Minhu, Z. Xiongzhen, C. Zhengang, Surface modification of silica and its compounding with polydimethylsiloxane matrix: interaction of modified silica filler with PDMS. Iran. Polym. J. 21, 583–589 (2012)

    Article  Google Scholar 

  52. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  53. U. Cakal, L. Yilmaz, H. Kalipcilar, Effect of feed gas composition on the separation of CO2/CH4 mixtures by PES-SAPO 34-HMA mixed matrix membranes. J. Membr. Sci. 417–418, 45–51 (2012)

    Article  Google Scholar 

  54. T.T. Moore, W.J. Koros, Non-ideal effects in organic-inorganic materials for gas separation membranes. J. Mol. Struct. 739(1), 87–98 (2005)

    Article  CAS  Google Scholar 

  55. T.C. Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin, A.J. Hill, Ultrapermeable reverse-selective nanocomposite membranes. Science 296, 519–522 (2002)

    Article  CAS  Google Scholar 

  56. R.J. Hill, Diffusive permeability, selectivity of nanocomposite membranes. Ind. Eng. Chem. Res. 45, 6890–6898 (2006)

    Article  CAS  Google Scholar 

  57. S. Azari, M. Karimi, M.H. Kish, Structural properties of the poly (acrylonitrile) membrane prepared with different cast thicknesses. Ind. Eng. Chem. Res. 49, 2442–2448 (2010)

    Article  CAS  Google Scholar 

  58. K.C. Khulbe, T. Matsuura, S.H. Noh, Effect of thickness of the PPO membranes on the surface morphology. J. Membr. Sci. 145, 243–251 (1998)

    Article  CAS  Google Scholar 

  59. H.A. Tsai, Y.S. Ciou, C.C. Hu, K.R. Lee, D.G. Yu, J.Y. Lai, Heat-treatment effect on the morphology and pervaporation performances of asymmetric PAN hollow fiber membranes. J. Membr. Sci. 255, 33–47 (2005)

    Article  CAS  Google Scholar 

  60. M. Safaei, R. Sarraf, M. Rashidzadeh, M. Manteghian, A Plackett–Burman design in hydrothermal synthesis of TiO2-derived nanotubes. J. Porous Mater. 17, 719–726 (2010)

    Article  CAS  Google Scholar 

  61. R.A. Stowe, R.P. Mayer, Efficient screening of process variables. Ind. Eng. Chem. 58(2), 36–40 (1966)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Research Institute of Petroleum Industry (RIPI) for the financial support with the Grant Number of 83481047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Rashidzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrokhnia, M., Safekordi, A., Rashidzadeh, M. et al. Development of porous nanocomposite membranes for gas separation by identifying the effective fabrication parameters with Plackett–Burman experimental design. J Porous Mater 23, 1279–1295 (2016). https://doi.org/10.1007/s10934-016-0187-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0187-y

Keywords

Navigation