Skip to main content

Advertisement

Log in

CO2 adsorption at high pressures in MCM-41 and derived alkali-containing samples: the role of the textural properties and chemical affinity

  • Original Paper
  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The adsorption properties of N2 and CO2 of MCM-41 and derived alkali-containing samples were analyzed over a wide range of pressures (up to ~4500 kPa) and temperatures (between 30 and 300 °C). The high-pressure and high-temperature experiments were carried out on pure MCM-41 and K- and Na-impregnated derived samples. It was analyzed the influence of pressure and temperature on the CO2 capture capacity on pure and impregnated samples. The adsorption performance was correlated to the structure and textural properties of the materials using X-ray diffraction and N2 adsorption–desorption measurements. The addition of an alkaline element changes the textural properties of the material increasing the pore size, which positively affected the CO2 adsorption capacity of these materials at high pressure. In addition, the isosteric heats of adsorption gave information about the chemical affinity between the impregnated materials and CO2. The CO2 adsorption at ~ 4500 kPa for the samples with 5 wt% Na at 100 and 200 °C were 77.98 and 9.79 mmol g−1, respectively, while the pure MCM-41 adsorbs only 8.92 mmol g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.M. Yoo, S.Y. Lee, S.J. Park, J. Solid State Chem. 197, 361 (2013)

    Article  CAS  Google Scholar 

  2. A. Sayari, Y. Belmabkhout, R. Serna-Guerrero, Chem. Eng. J. 171, 760 (2011)

    Article  CAS  Google Scholar 

  3. Y. Belmabkhout, R. Serna-Buerrero, A. Sayari, Chem. Eng. Sci. 64, 3721 (2009)

    Article  CAS  Google Scholar 

  4. Y. Belmabkhout, A. Sayari, Chem. Eng. Sci. 64, 3729 (2009)

    Article  CAS  Google Scholar 

  5. P. Behrens, G.D. Stucky, Angew. Chem. 105, 729 (1993)

    Article  CAS  Google Scholar 

  6. N. Bai, Y. Chi, Y. Zou, W. Pang, Mat. Lett. 54, 37 (2002)

    Article  CAS  Google Scholar 

  7. A.S. Araujo, J.M.F.B. Aquino, M.J.B. Souza, A.O.S. Silva, J. Solid State Chem. 171, 371 (2003)

    Article  CAS  Google Scholar 

  8. C.C. Costa, D. Ma, A. Melo, M.A.F. Melo, M.E. Mendoza, J.C. Nascimento, J.M. Andrade, J.M.F. Barros, J. Porous Mater. 21, 1069 (2014)

    Article  CAS  Google Scholar 

  9. Y. Belmabkhout, G. De Weireld, M. Frère, J. Chem. Eng. Data 49, 1379 (2004)

    Article  CAS  Google Scholar 

  10. N. Hedin, L.J. Chen, A. Laaksonen, Nanoscale 2, 1819 (2010)

    Article  CAS  Google Scholar 

  11. J. Wu, X. Liu, S.H. Tolbert, J. Phys. Chem. B 104, 11837 (2000)

    Article  CAS  Google Scholar 

  12. B. Ma, L. Zhuang, S. Chen, J. Porous Mater. (2015). doi:10.1007/s10934-015-0106-7

    Google Scholar 

  13. S.C. Tian, J.G. Jiang, K.M. Li, F. Yang, X.J. Chen, RSC Adv. 4, 6858 (2014)

    Article  CAS  Google Scholar 

  14. Q. Wang, Y. Gao, J. Luo, Z. Zhong, A. Borgna, Z. Guo, D. O’Hare, RSC Adv. 3, 3414 (2013)

    Article  CAS  Google Scholar 

  15. Z. Luan, H. He, W. Zhou, C.F. Cheng, J. Klinowski, J. Chem. Soc. Faraday Trans. 91, 2955 (1995)

    Article  CAS  Google Scholar 

  16. D.D. Dharani, P.J.E. Harlick, A. Sayari, Catal. Comm. 8, 829 (2007)

    Article  Google Scholar 

  17. S.C.G. Santos, S.W.M. Machado, A.M. Garrido-Pedrosa, M.J.B. Souza, J. Porous Mater. 22, 1145 (2015)

    Article  CAS  Google Scholar 

  18. S. Cavenati, C.A. Grande, A.E. Rodriguez, J. Chem Data 49, 1095 (2004)

    Article  CAS  Google Scholar 

  19. S.C. Zhuo, Y.M. Huang, J. Hu, H.L. Liu, Y. Hu, J.W. Jiang, J. Phys. Chem. C 112, 11295 (2008)

    Article  CAS  Google Scholar 

  20. S. Lowell, J.E. Shields, M.A. Thomas, Characterization of Porous Solids and Powders: Surface, Area, Pore Size and Density (Kluwer Academic Publishers, Springer, London, 2004), pp. 58–80

    Google Scholar 

  21. E.M. McCash, Surface Chemistry (Oxford University Press, Oxford, 2002)

    Google Scholar 

  22. J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, K.S.W. Sing, Adsorption by Powders and Porous Solids. Principles, Methodology and Applications, 2nd edn. (Academic Press, Elsevier, Oxford University Press, Oxford, 2014), pp. 1–58

    Book  Google Scholar 

  23. J.B. Condon, Surface Area and Porosity Determinations by Physisorption, Measurements and Theory (Elsevier, Oxford University Press, Oxford, 2006), pp. 1–28

    Book  Google Scholar 

  24. J.C. Fisher, R.V. Siriwardane, R.W. Stevens, Ind. Eng. Chem. Res. 50, 13962 (2011)

    Article  CAS  Google Scholar 

  25. R.V. Siriwardane, M.S. Shen, E.P. Fisher, Energy Fuels 15, 279 (2001)

    Article  CAS  Google Scholar 

  26. S. Loganathan, M. Tikmani, A.K. Ghoshal, Langmuir 29, 3491 (2013)

    Article  CAS  Google Scholar 

  27. A.R. Millward, O.M. Yaghi, J. Am. Chem. Soc. 127, 17998 (2005)

    Article  CAS  Google Scholar 

  28. A. Zukal, J. Mayerova, J. Cejka, Phys. Chem. Chem. Phys. 12, 5240 (2010)

    Article  CAS  Google Scholar 

  29. T. Custódio dos Santos, S. Bourrelly, P.L. Llewellyn, J. de Walkimar, M.C. Machado Ronconi, Phys. Chem. Chem. Phys. 17, 11095 (2015)

    Article  Google Scholar 

  30. P.L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. De Weireld, J. Chang, D. Hong, Y.K. Hwang, S.H. Jhung, G. Ferey, Langmuir 24, 7245 (2008)

    Article  CAS  Google Scholar 

  31. J.Y. Jung, F. Karadas, S. Zulfiqar, E. Deniz, S. Aparicio, M. Atilhan, C.T. Yavuz, S.M. Han, Phys. Chem. Chem. Phys. 15, 14319 (2013)

    Article  CAS  Google Scholar 

  32. J. Perez-Carbajo, P. Gómez-Álvarez, R. Bueno-Perez, P.J. Merkling, S. Calero, Phys. Chem. Chem. Phys. 16, 5678 (2014)

    Article  CAS  Google Scholar 

  33. M. Pera-Titus, M. Palomino, S. Valencia, F. Rey, Phys. Chem. Chem. Phys. 16, 24391 (2014)

    Article  CAS  Google Scholar 

  34. Z. Wu, N. Hao, G. Xiao, L. Liu, P. Webley, D. Zhao, Phys. Chem. Chem. Phys. 13, 2495 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the project SENER-CONACYT and M. J. Ramírez-Moreno thanks to CONACYT for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heriberto Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Moreno, M.J., Romero-Ibarra, I.C., González-de Gortari, M. et al. CO2 adsorption at high pressures in MCM-41 and derived alkali-containing samples: the role of the textural properties and chemical affinity. J Porous Mater 23, 1155–1162 (2016). https://doi.org/10.1007/s10934-016-0173-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0173-4

Keywords

Navigation