Skip to main content

Advertisement

Log in

Effect of porous structure on the formation of active sites in manganese hosted in ordered mesoporous silica catalysts for environmental protection

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Recently ordered mesoporous silicas have been considered as suitable catalyst supports due to their high surface area, well developed porous volume and tuned size, shape and topology of mesopores. Among them SBA-15 and KIT-6 are most promising and studied materials as host matrix of metal/metal oxide nanoparticles. Both structures are characterized with cylindrical mesopores which are 2D- and 3D-packed in the SBA-15 and KIT-6 silicas, respectively. The flexibility of the oxidation state of manganese ensures high oxygen storage capacity of its oxides and provokes their wide application as catalysts in various redox processes. The aim of the current investigation is to clear the effect of pore topology in SBA-15 and KIT-6 mesoporous silicas on the state of the hosted in them manganese oxide nanoparticles. The samples were obtained by incipient wetness impregnation of silicas with manganese nitrate and conventional SiO2 was also used as a reference support. A complex of physicochemical techniques, such as nitrogen physisorption, X-ray diffraction, UV–Vis, XPS, FTIR and temperature-programmed reduction with hydrogen was used for samples characterization. The obtained modifications were tested as potential catalysts for environmental protection via total oxidation of VOCs (ethyl acetate) or hydrogen production from methanol as clean and effective alternative fuel. It was established that the porous structure of mesoporous silica supports influences in a complex way the catalytic behaviour of their manganese modifications, which is determined by the specificity of the reaction medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Cracium, B. Nentwick, K. Hadjiivanov, H. Knzinger, Appl. Catal. A 243, 67 (2003)

    Article  Google Scholar 

  2. D.M. Frias, S. Nousir, I. Barrio, M. Montes, L.M. Martinez, M.A. Centeno, J.A. Odirozola, Appl. Catal. A 325, 205 (2007)

    Article  CAS  Google Scholar 

  3. J.I. Gutirrez-Ortiz, R. Lypez-Fonseca, U. Aurrekoetxea, J.R. Gonzalez-Velasco, J. Catal. 218, 148 (2003)

    Article  Google Scholar 

  4. J. Hu, W. Chu, L. Shi, J. Nat. Gas Chem. 17, 159 (2008)

    Article  CAS  Google Scholar 

  5. F.N. Aguero, A. Scian, B.P. Barbero, L.E. Cads, Catal. Today 133–135, 493 (2008)

    Article  Google Scholar 

  6. R. Dula, R. Janik, T. Machej, J. Stoch, R. Grabowski, E.M. Serwicka, Catal. Today 119, 327 (2007)

    Article  CAS  Google Scholar 

  7. H. Péreza, P. Navarro, J.J. Delgado, M. Montes, Appl. Catal. A 400, 238 (2011)

    Article  Google Scholar 

  8. A.R. Gandhe, J.S. Rebello, J.L. Figueiredo, J.B. Fernandes, Appl. Catal. B 72, 129 (2007)

    Article  CAS  Google Scholar 

  9. S.L. Suib, Chem. Innov. 30(3), 27 (2000)

    CAS  Google Scholar 

  10. V.D. Makwana, Y.-C. Son, A.R. Howell, S.L. Suib, J. Catal. 210, 46 (2002)

    Article  CAS  Google Scholar 

  11. J.Y. Wang, G.G. Xia, Y.G. Yin, S.L. Suib, C.L. O’Young, J. Catal. 176, 275 (1998)

    Article  CAS  Google Scholar 

  12. J. Luo, Q. Zhang, A. Huang, S.L. Suib, Microporous Mesoporous Mater. 35–36, 209 (2000)

    Article  Google Scholar 

  13. D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmeleka, G.D. Stucky, Science 279, 548 (1998)

    Article  CAS  Google Scholar 

  14. M. Choi, W. Heo, F. Kleitz, R. Ryoo, Chem. Commun. 1340 (2003)

  15. F. Kleitz, S. H. Choi, R. Ryoo, Chem. Commun. 2136 (2003)

  16. A. Taguchi, F. Schüth, Microporous Mesoporous Mater. 77, 1 (2005)

    Article  CAS  Google Scholar 

  17. T. Tsoncheva, A. Gallo, I. Spassova, M. Dimitrov, I. Genova, M. Marelli, M. Khristova, G. Atanasova, D. Kovacheva, V.D. Santo, Appl. Catal. A 464–465, 243 (2013)

    Article  Google Scholar 

  18. T. Tsoncheva, I. Genova, M. Stoyanova, M.-M. Pohl, R. Nickolov, M. Dimitrov, E. Sarcadi-Priboczki, M. Mihaylov, D. Kovacheva, K. Hadjiivanov, Appl. Catal. B 147, 684 (2014)

    Article  CAS  Google Scholar 

  19. T. Tsoncheva, A. Gallo, I. Genova, I. Spassova, M. Marelli, M. Dimitrov, M. Khristova, G. Atanasova, D. Kovacheva, D. Nihtyanova, V. Dal Santo, Inorg. Chim. A 423, 145 (2014)

    Article  CAS  Google Scholar 

  20. T. Tsoncheva, L. Ivanova, J. Rosenholm, M. Linden, Appl. Catal. B 89, 365 (2009)

    Article  CAS  Google Scholar 

  21. T. Tsoncheva, J. Rosenholm, C.V. Teixeira, M. Dimitrov, M. Linden, C. Minchev, Microporous Mesoporous Mater. 89, 209 (2006)

    Article  CAS  Google Scholar 

  22. T. Tsoncheva, G. Issa, J.M.L. Nieto, T. Blasco, P. Concepcion, M. Dimitrov, G. Atanasova, D. Kovacheva, Microporous Mesoporous Mater. 180, 156 (2013)

    Article  CAS  Google Scholar 

  23. M. Sui, J. Liu, L. Sheng, Appl. Catal. B 106, 195 (2011)

    CAS  Google Scholar 

  24. Q. Tang, S. Hu, Y. Chen, Z. Guo, Y. Hu, Y. Chen, Y. Yang, Microporous Mesoporous Mater. 132, 501 (2010)

    Article  CAS  Google Scholar 

  25. Y. Yang, X. Xu, K. Sun, J. Hazard. Mater. B139, 140 (2007)

    Article  Google Scholar 

  26. T. Gürmen, S. Atalay, E. Alpay, Turk. J. Chem. 31, 605 (2007)

    Google Scholar 

  27. X. Wang, M.V. Landau, H. Rotter, L. Vradman, A. Wolfson, A. Erenburg, J. Catal. 222, 565 (2004)

    Article  CAS  Google Scholar 

  28. R. Barthos, F. Solymosi, J. Catal. 249, 289 (2007)

    Article  CAS  Google Scholar 

  29. M. Zhao, H. Zhang, X. Lia, Y. Chen, J. Energy Chem. 23, 755 (2014)

    Article  Google Scholar 

  30. J.C. Brown, E. Gulari, Catal. Commun. 5, 431 (2004)

    Article  CAS  Google Scholar 

  31. L. Lamaita, M.A. Peluso, J. Sambeth, H. Thomas, G. Mineli, P. Porta, Catal. Today 107–108, 133 (2005)

    Article  Google Scholar 

  32. F. Milella, J.M. Gallardo-Amores, M. Baldic, G. Buscaa, J. Mater. Chem. 8, 2525 (1998)

    Article  Google Scholar 

  33. S. Zheng, L. Gao, J. Guo, Mater. Chem. Phys. 71, 174 (2001)

    Article  CAS  Google Scholar 

  34. G.S. Kumar, M. Palanichamy, M. Hartmann, V. Murugesan, Microporous Mesoporous Mater. 112, 53 (2008)

    Article  CAS  Google Scholar 

  35. J.S. Foord, R.B. Jackman, G.C. Allen, Philos. Mag. A 49(5), 657 (1984)

    Article  CAS  Google Scholar 

  36. Y. Du, Q. Meng, J. Wanga, J. Yan, H. Fan, Y. Liu, H. Dai, Microporous Mesoporous Mater. 162, 199 (2012)

    Article  CAS  Google Scholar 

  37. D. Delimaris, T. Ioannides, Appl. Catal. B 84, 303 (2008)

    Article  CAS  Google Scholar 

  38. Y. Liaoa, M. Fua, L. Chena, J. Wua, B. Huanga, D. Yea, Catal. Today 216, 220 (2013)

    Article  Google Scholar 

  39. T. Tsoncheva, G. Issa, I. Genova, M. Dimitrov, J. Porous Mater. 20, 1361 (2013)

    Article  CAS  Google Scholar 

  40. P.O. Larsson, A. Andersson, Appl. Catal. B 24, 175 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support BAS and Bulgarian National Science Fund at the Ministry of Education and Science under Project DFNI-E02/2/2014 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radostina Ivanova.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, R., Genova, I., Kovacheva, D. et al. Effect of porous structure on the formation of active sites in manganese hosted in ordered mesoporous silica catalysts for environmental protection. J Porous Mater 23, 1005–1013 (2016). https://doi.org/10.1007/s10934-016-0158-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0158-3

Keywords

Navigation