Skip to main content
Log in

Infested ash trees as a carbon source for supercapacitor electrodes

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Infested ash tree residues were carbonized at 600, 700 and 900 °C. The carbonization product—biochar (BC) was investigated as a potential active material for supercapacitor electrodes in its original (o-BC) and activated (a-BC) forms. The electrodes were formed with o-BC or a-BC and a water based composite binder. The correlation between the physical properties of BC and electrochemical properties of these electrodes were carefully investigated in H2SO4 and aqueous LiN(SO2CF3)2 electrolytes. The results obtained from cyclic voltammetry, electrochemical impedance spectrometry and charge/discharge measurements showed approximately a tenfold increase in the capacitance of the electrodes with the a-BC. Further analysis of the BC samples identified functional groups on the carbon surface of the a-BC which could be responsible for such a dramatic increase in the performance of the electrodes. The highest specific capacitances of 470 F g−1 in 0.75 M H2SO4 and 335 F g−1 in 3 M LiN(SO2CF3)2 were achieved. The cycle life of electrodes with a-BC in LiN(SO2CF3)2 electrolyte is stable and shows a very insignificant decrease in capacitive performance after 1500 cycles. These results indicate that the BC derived from infested ash trees is a promising material for use in supercapacitor electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Diesel Engine/Locomotive Cranking & Supercapacitors, Electronic Components KEMET charged http://www.kemet.com/Lists/TechnicalArticles/Attachments/124/2013-11%20Diesel%20Engine%20Locomotive%20Cranking%20and%20KEMET%20Supercapacitors.pdf. Accessed 30 July 2014

  2. T. Xue, X. Wang, J.M. Lee, Dual-template synthesis of Co(OH) 2 with mesoporous nanowire structure and its application in supercapacitor. J. Power Sources 201, 382–386 (2012)

    Article  CAS  Google Scholar 

  3. J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44, 1624–1652 (2006)

    Article  CAS  Google Scholar 

  4. Y. Xie, D. Fu, Supercapacitance of ruthenium oxide deposited on titania and titanium substrates. Mater. Chem. Phys. 122, 23–29 (2010)

    Article  CAS  Google Scholar 

  5. Facts About B.C.’s Mountain Pine Beetle’, April 2013 http://www.for.gov.bc.ca/hfp/mountain_pine_beetle/Updated-Beetle-Facts_April2013.pdf. Accessed 21 July 2014

  6. Natural Resources Canada, Mountain pine beetle—http://www.nrcan.gc.ca/forests/insects-diseases/13381. Accessed 28 July 2014

  7. J. Hunt, M. DuPonte, D. Sato, A. Kawabata, The basics of biochar: a natural soil amendment, soil and crop management, Published by the College of Tropical Agriculture and Human Resources (CTAHR) UH–CTAHR SCM-30, (2010)

  8. H.P. Schmidt, Novel Uses of Biochar, USBI Biochar Conference, June 25, 2013

  9. S. Teng, G. Siegel, W. Wang, A. Tiwari, Carbonized wood for supercapacitor electrodes. ECS Solid State Lett. 3(5), 25–28 (2014)

    Article  Google Scholar 

  10. S. Koutcheiko, V. Vorontsov, Activated carbon derived from wood biochar and its application in supercapacitors. J. Biobased Mater. Bioenergy 7, 733–740 (2013)

    Article  CAS  Google Scholar 

  11. M. Liu, L. Kong, P. Zhang, Y. Luo, L. Kang, Porous wood carbon monolith for high-performance supercapacitors. Electrochim. Acta 60, 443–448 (2012)

    Article  CAS  Google Scholar 

  12. J. Jiang, L. Zhang, X. Wang, N. Holm, K. Rajagopalan, F. Chen et al., Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim. Acta 113, 481–489 (2013)

    Article  CAS  Google Scholar 

  13. H. Jin, X. Wang, Z. Gu, J. Polin, Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. J. Power Sources 236, 285–292 (2013)

    Article  CAS  Google Scholar 

  14. J. Hong, W. Xiaomin, G. Zhengrong, G. Anderson, K. Muthukumarappan, Distillers dried grains with soluble (DDGS) bio-char based activated carbon for supercapacitors with organic electrolyte tetraethylammonium tetraßuoroborate. J. Environ. Chem. Eng. 2, 1404–1409 (2014)

    Article  Google Scholar 

  15. P. Kalyani, A. Anitha, Biomass carbon and its prospects in electrochemical energy systems. Int. J. Hydrogen Energy 10, 4034–4045 (2013)

    Article  Google Scholar 

  16. L.J. Kennedy, J.J. Vijaya, G. Sekaran, Electrical conductivity study of porous carbons derived from rice husk. Mater. Chem. Phys. 91, 471–476 (2005)

    Article  CAS  Google Scholar 

  17. L. Wei, G. Yushin, Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1, 552–565 (2012)

    Article  CAS  Google Scholar 

  18. L. Kouchachvili, N. Maffei, E. Entchev, Novel binding material for supercapacitor electrodes. J. Solid State Electrochem. 18, 2539–2547 (2014)

    Article  CAS  Google Scholar 

  19. MSDS Acheson Colloids Company (USA) Distributed by Ladd Research (USA)

  20. T. Randriamanantena, F. Lahatrarazafindramisa, G. Ramanantsizehena, A. Bernes, C. Lacabane, Thermal behaviour of three woods of Madagascar by thermogravimetric analysis in inert atmosphere, 4th high-energy physics international conference 2009, Madagascar

  21. M. Polleto, J. Dettenborn, V. Pistor, M. Zeni, A.J. Zattera, Materials produced from plant biomass. Part 1: evaluation of thermal stability and pyrolysis of wood. Mater. Res. 13, 375–379 (2010)

    Article  Google Scholar 

  22. L.E. Hernandez-Mena, AAB. Pécora, A.L. Beraldo, Slow pyrolysis of bamboo biomass: analysis of biochar properties, CET Chem. Eng. Trans. 37, 115–120 (2014)

    Google Scholar 

  23. M.G. Gronli, G. Varhegyi, C. Di Blasi, Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 41, 4201–4208 (2002)

    Article  CAS  Google Scholar 

  24. E. Putun, B.B. Uzun, A.E. Putun, Composition of products obtained via fast pyrolysis of olive-oil residue: effect of pyrolysis temperature. J. Anal. Appl. Pyrol. 79, 147–153 (2007)

    Article  Google Scholar 

  25. N. Ali, M. Saleem, M. Kalim, K. Shahzard, A. Chughtai, Thermogravimetric study of Pakistani cotton and maize Stalk using iso-conversional technique. Life Sci. 8, 382–387 (2014)

    Google Scholar 

  26. K. Kim, J. Kim, T. Cho, J. Choi, Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour. Technol. 118, 158–162 (2012)

    Article  CAS  Google Scholar 

  27. B.E. Conway, Electrochemical Supercapacitors (Kluwer Academic/Plenum, New York, 1999)

    Book  Google Scholar 

  28. R. Azargohar, S. Nanda, J. Kozinski, A. Dalai, R. Sutarto, Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel 125, 90–100 (2014)

    Article  CAS  Google Scholar 

  29. L. Wang, X. Li, J. Ma, Q. Wu, X. Duan, Non-activated, N, S-co-doped biochar derived from banana with superior capacitive properties. Sustain. Energy 2, 39–43 (2014)

    Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by Transport Canada and is gratefully acknowledged. L.K. would like to thank Dr. Michio Ikura for valuable technical discussions. The authors would also like to thank A. Hall and K. Michaelian for the SEM images and FTIR data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lia Kouchachvili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouchachvili, L., Maffei, N. & Entchev, E. Infested ash trees as a carbon source for supercapacitor electrodes. J Porous Mater 22, 979–988 (2015). https://doi.org/10.1007/s10934-015-9972-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-9972-2

Keywords

Navigation