Skip to main content
Log in

Structuring of polystyrene surface via swelling–freezing drying in a binary solvent solution

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Here we fabricated porous polystyrene (PS) plates via a two-step process: swelling process and freezing process. An aqueous solution containing tetrahydrofuran (THF) was used in the swelling process and liquid nitrogen for the freezing process. Two types of the structures as sponge structure and pore structure were found by adjusting THF content in the solution, swelling time and freezing time, respectively. The pore size was mainly in the range of 1–4 μm with narrow size distribution. The surface hydrophilicity changed slightly with THF content and the swelling time. However, the absorption properties of PS plates in either water or oil increased with THF content in the solution from 70 to 80 wt%, the swelling time from 5 to 10 min, and the freezing time from 1 to 1.5 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.S. Park, J.K. Kim, Breath figure patterns prepared by spin coating in a dry environment. Langmuir 20, 5347–5352 (2004)

    Article  CAS  Google Scholar 

  2. K.H. Wong, M. Hernandez-Guerrero, A.M. Granville, T.P. Davis, C. Barner-Kowollik, M.H. Stenzel, Water-assisted formation of honeycomb structured porous films. J. Porous Mater. 13, 213–223 (2006)

    Article  CAS  Google Scholar 

  3. M.M. Tao, F. Liu, L.X. Xue, Poly(vinylidene fluoride) membranes by an ultrasound assisted phase inversion method. Ultrason. Sonochem. 20, 232–238 (2013)

    Article  CAS  Google Scholar 

  4. T.-I. Yang, T.-L. Su, P.-L. Lin, I.-H. Tseng, C.-H. Chang, H.-W. Fang, Fabrication of porous polylactic acid films assisted by dip-coating and template leaching techniques. J. Appl. Polym. Sci. 124(3), 2333–2339 (2012)

    Article  CAS  Google Scholar 

  5. J. Peng, Y. Han, Y. Yang, B. Li, The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer 45, 447–452 (2004)

    Article  CAS  Google Scholar 

  6. J.H. Bang, K.S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 22, 1039–1059 (2010)

    Article  CAS  Google Scholar 

  7. M. Srinivasarao, D. Collings, A. Philips, S. Patel, Three-dimensionally ordered array of air bubbles in a polymer film. Science 292(6), 79–83 (2010)

    Google Scholar 

  8. H. Liua, K. Nakagawab, D. Chaudharya, Y. Asakumac, M.O. Tadé, Freeze-dried macroporous foam prepared from chitosan/xanthan gum/montmorillonite nanocomposites. Chem. Eng. Res. Des. 8(9), 2356–2364 (2011)

    Article  Google Scholar 

  9. R. Okaji, S. Sakashita, K. Tazumi, K. Taki, S. Nagamine, M. Ohshima, Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. J. Mater. Sci. 48, 2038–2045 (2013)

    Article  CAS  Google Scholar 

  10. M. Shibuya, J.F. Despres, Gradient microstructure of titanium nitride fabricated by combustion synthesis with liquid nitrogen. J. Eur. Ceram. Soc. 25(16), 3657–3662 (2005)

    Article  CAS  Google Scholar 

  11. S.H. Im, U. Jeong, Y. Xia, Polymer hollow particles with controllable holes in their surfaces. Nat. Mater. 4(9), 671–675 (2005)

    Article  Google Scholar 

  12. S.H. Im, O.O. Park, Fabrication of polymeric hollow spheres having macropores by a quenching and sublimation process. Macromol. Res. 11, 518–522 (2003)

    Article  CAS  Google Scholar 

  13. J.-W. Kim, K. Tazumi, R. Okaji, M. Ohshima, Honeycomb monolith-structured silica with highly ordered, three-dimensionally interconnected macroporous walls. Chem. Mater. Commun. 21, 3476–3478 (2009)

    Article  CAS  Google Scholar 

  14. V.M. Gun’ko, R. Leboda, J. Skubiszewska-Zieba, B. Gawdzik, B. Charmas, Structural characteristics of porous polymers treated by freezing with water or acetone. Appl. Surf. Sci. 252, 612–618 (2005)

    Article  Google Scholar 

  15. N. Tang, J. Liu, J. Ma, Present situation and development of membrane materials for membrane distillation. Chem. Ind. Eng. Prog. 22(8), 808–812 (2003)

    CAS  Google Scholar 

  16. P.T.C.M. Tanev, T.J. Pinnavaia, Nature 368, 321–323 (1994)

    Article  CAS  Google Scholar 

  17. X. Wang, W. Li, V. Kumar, A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications. Biomaterials 27, 1924–1929 (2006)

    Article  CAS  Google Scholar 

  18. H. Yabu, M. Shimomura, Simple fabrication of microlens arrays. Langmuir 21, 1709–1711 (2005)

    Article  CAS  Google Scholar 

  19. J.-K. Kim, K. Taki, M. Ohshima, Preparation of a unique microporous structure via two step phase separation in the course of drying a ternary polymer solution. Langmuir 23, 12397–12405 (2007)

    Article  CAS  Google Scholar 

  20. H. Zhang, A.I. Cooper, Aligned porous structures by directional freezing. Adv. Mater. 19, 1529–1533 (2007)

    Article  CAS  Google Scholar 

  21. L.-S. Wan, B.-B. Ke, J. Zhang, Z.-K. Xu, Pore shape of honeycomb-patterned films: modulation and interfacial behavior. J. Phys. Chem. B 116, 40–47 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangfen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Li, G., Zhang, J. et al. Structuring of polystyrene surface via swelling–freezing drying in a binary solvent solution. J Porous Mater 22, 859–865 (2015). https://doi.org/10.1007/s10934-015-9959-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-9959-z

Keywords

Navigation