Skip to main content
Log in

Oxidation of CO and hydrocarbons with molecular oxygen over Fe–ZSM-5 zeolite

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A series of iron-containing zeolites ZSM-5 with different iron loadings (0.5, 2 and 4 wt%) calcined at 900 °C and characterized by a high crystallinity were studied. The zeolites were tested in reactions of CO, methane, propylene and toluene oxidation by molecular oxygen in vacuum setup, as well as in flow reactor system using a model reaction mixture simulating automobile exhaust gases. Reactivities of components of the model reaction mixture change in the series: C3H6 > CO > C6H5CH3 > CH4. There were two stages of the hydrocarbon oxidation: they were oxidized first to CO and then reoxidized to CO2. Temperatures higher than 350 °C were required for methane oxidation to produce CO and CO2, any other products of methane partial oxidation being not found. High activity of Fe–ZSM-5 catalysts towards propylene and toluene oxidation was found to be determined by zeolite porous structure and capability to adsorb rapidly mentioned hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E.G. Derouane, J.C. Védrine, R. Ramos Pinto, P.M. Borges, L. Costa, M.A.N.D.A. Lemos, F. Lemos, F. Ramôa Ribeiro, The acidity of zeolites: concepts, measurements and relation to catalysis. Catal Rev 55, 454–515 (2013)

    Article  CAS  Google Scholar 

  2. H.-X. Li, J.M. Donohue, W.E. Chrmier, Y.F. Chu, Application of zeolites as hydrocarbon traps in automotive emission controls. Stud. Surf. Sci. Catal. 58, 1375–1382 (2005)

    Article  Google Scholar 

  3. I.V. Mishakov, A.A. Vedyagin, A.M. Volodin, M.S. Myakisheva, Adsorption catalytic neutralization of exhaust gases from diesel engines. Chem. Sustain. Dev. 19, 91–97 (2011)

    Google Scholar 

  4. B. Wichtelova, Z. Sobalik, J. Dedecek, Redox catalysis over metallo-zeolites contribution to environmental catalysis. Appl. Catal. B Environ. 41, 97–114 (2003)

    Article  CAS  Google Scholar 

  5. A.A. Eliseev, A.S. Vyacheslavov, A.V. Lukashin, Yu.D. Tretyakov, I.P. Suzdalev, Yu.V. Maximov, P. Goernert, Iron-containing nanocomposites based on ZSM-5 zeolite. Int. J. Nanosci. 05, 459–463 (2006)

    Article  CAS  Google Scholar 

  6. H.-Y. Chen, W.M.H. Sachtler, Activity and durability of Fe/ZSM-5 catalysts for lean burn NOx reduction in the presence of water vapor. Catal. Today 42, 73–83 (1998)

    Article  CAS  Google Scholar 

  7. K.A. Dubkov, N.S. Ovanesyan, A.A. Shteinman, E.V. Starokon, G.I. Panov, Evolution of iron states and formation of α-sites upon activation of FeZSM-5 zeolites. J. Catal. 207, 341–352 (2002)

    Article  CAS  Google Scholar 

  8. I. Yuranov, D.A. Bulushev, A. Renken, L. Kiwi-Minsker, Benzene hydroxylation over FeZSM-5 catalysts: Which Fe sites are active? J. Catal. 227, 138–147 (2004)

    Article  CAS  Google Scholar 

  9. G.D. Pirngruber, P.K. Roy, R. Prins, The role of autoreduction and of oxygen mobility in N2O decomposition over Fe-ZSM-5. J. Catal. 246, 147–157 (2007)

    Article  CAS  Google Scholar 

  10. J.B. Taboada, A.R. Overweg, P.J. Kooyman, I.W.C.E. Arends, G. Mul, Following the evolution of iron from framework to extra-framework positions in isomorphously substituted [Fe, Al]MFI with 57Fe Mössbauer spectroscopy. J. Catal. 231, 56–66 (2005)

    Article  CAS  Google Scholar 

  11. G. Fierro, G. Moretti, G. Ferraris, G.B. Andreozzi, A Mössbauer and structural investigation of Fe-ZSM-5 catalysts: influence of Fe oxide nanoparticles size on the catalytic behaviour for the NO-SCR by C3H8. Appl. Catal. B Environ. 102, 215–223 (2011)

    Article  CAS  Google Scholar 

  12. L.V. Pirutko, V.S. Chernyavsky, E.V. Starokon, A.A. Ivanov, A.S. Kharitonov, G.I. Panov, The role of α-sites in N2O decomposition over FeZSM-5. Comparison with the oxidation of benzene to phenol. Appl. Catal. B Environ. 91, 174–179 (2009)

    Article  CAS  Google Scholar 

  13. G.I. Panov, Advances in oxidation catalysis; oxidation of benzene to phenol by nitrous oxide. Cattech 4, 18–31 (2000)

    Article  CAS  Google Scholar 

  14. E.V. Starokon, M.V. Parfenov, S.S. Arzumanov, L.V. Pirutko, A.G. Stepanov, G.I. Panov, Oxidation of methane to methanol on the surface of FeZSM-5 zeolite. J. Catal. 300, 47–54 (2013)

    Article  CAS  Google Scholar 

  15. M.V. Parfenov, E.V. Starokon, L.V. Pirutko, G.I. Panov, Quasicatalytic and catalytic oxidation of methane to methanol by nitrous oxide over FeZSM-5 zeolite. J. Catal. 318, 14–21 (2014)

    Article  CAS  Google Scholar 

  16. H. Guesmi, D. Berthomieu, L. Kiwi-Minsker, Reactivity of oxygen species formed upon N2O dissociation over Fe–ZSM-5 zeolite: CO oxidation as a model. Catal. Commun. 11, 1026–1031 (2010)

    Article  CAS  Google Scholar 

  17. M.A. Uddin, T. Komatsu, T. Yashima, Catalytic activity of framework iron in MFI-type ferrisilicate for the oxidation of carbon monoxide. Microporous Mater. 1, 201–205 (1993)

    Article  CAS  Google Scholar 

  18. D.E. Doronkin, L.V. Piryutko, E.V. Starokon’, G.I. Panov, A.Y. Stakheev, Role of α-sites in the selective catalytic reduction of NOx with ammonia over Fe-ZSM-5 catalysts. Kinet. Catal. 53, 747–752 (2012)

    Article  CAS  Google Scholar 

  19. M.S. Kumar, M. Schwidder, W. Grünert, A. Brückner, On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx catalysts: new insights by a combined EPR and UV/VIS spectroscopic approach. J. Catal. 227, 384–397 (2004)

    Article  CAS  Google Scholar 

  20. M. Iwasaki, H. Shinjoh, A comparative study of “standard”, “fast” and “NO2” SCR reactions over Fe/zeolite catalyst. Appl. Catal. A Gen. 390, 71–77 (2010)

    Article  CAS  Google Scholar 

  21. G.I. Panov, G.A. Sheveleva, A.S. Kharitonov, V.N. Romannikov, L.A. Vostrikova, Oxidation of benzene to phenol by nitrous oxide over Fe-ZSM-5 zeolites. App. Catal. A Gen. 82, 31–36 (1992)

    Article  CAS  Google Scholar 

  22. G.I. Panov, A.S. Kharitonov, V.I. Sobolev, Oxidative hydroxylation using dinitrogen monoxide: a possible route for organic synthesis over zeolites. Appl. Catal. A Gen. 98, 1–20 (1993)

    Article  CAS  Google Scholar 

  23. B. Michalkiewicz, Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Appl. Catal. A Gen. 277, 147–153 (2004)

    Article  CAS  Google Scholar 

  24. V.V. Popovskii, Regularities of deep oxidation of substances over solid oxide catalysts. Kinet. Katal. 13, 1190–1203 (1972). (in Russian)

    CAS  Google Scholar 

  25. T.V. Andrushkevich, V.V. Popovskii, G.K. Boreskov, Catalytic properties of oxides of metals from IV period of periodic table with respect to oxidative reactions. I. Methane oxidation. Kinet. Katal. 6, 860–863 (1965). (in Russian)

    CAS  Google Scholar 

  26. G.I. Panov, E.V. Starokon, L.V. Pirutko, E.A. Paukshtis, V.N. Parmon, New reaction of anion radicals O with water on the surface of FeZSM-5. J. Catal. 254, 110–120 (2008)

    Article  CAS  Google Scholar 

  27. G.I. Panov, K.A. Dubkov, E.V. Starokon, Active oxygen in selective oxidation catalysis. Catal. Today 117, 148–155 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Russian Academy of Sciences (Project #V.45.3.2). The authors are grateful to V. V. Mokrinskii and T. A. Komnik for their assistance in catalyst testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vedyagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starokon, E.V., Vedyagin, A.A., Pirutko, L.V. et al. Oxidation of CO and hydrocarbons with molecular oxygen over Fe–ZSM-5 zeolite. J Porous Mater 22, 521–527 (2015). https://doi.org/10.1007/s10934-015-9922-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-9922-z

Keywords

Navigation