Skip to main content
Log in

The structure and textural heterogeneity of single- and double-walled aluminogermanate imogolites

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

This work studies the combined use of XRD, AFM and gas adsorption to determine the structure and textural heterogeneity of two Ge-imogolite nanotubes, one single-walled and another double-walled (<100 nm). In XRD, the indexation of lines is broadened, reflection lines 003, 004, 005 and 006 are identified and the signature of the presence of a double wall is revealed on the diffractogram. Contrary to current assumptions concerning these two products, both AFM and adsorption/desorption of N2 at 77 K and of CO2 at 273 K show that these two imogolites are polydisperse and heterogeneous in terms of length and inner and outer diameter. An analysis of adsorption clearly shows that N2 is limited to the characterization of porosities between 1 and 50 nm and that CO2 is better-suited to the analysis of ultramicropores (<1 nm). The specific surfaces of micropores estimated with N2 are greatly underestimated. The application of the Dubinin–Astakhov model shows that the two imogolites have very extensive microporous specific surfaces whose structure is heterogeneous and accessible to exchanges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Imamura, Y. Hayashi, K. Kajiwara, H. Hoshino, C. Kaito, Imogolite: a possible new type of shape-selective catalyst. Ind. Eng. Chem. Res. 32, 600–603 (1993)

    Article  CAS  Google Scholar 

  2. F. Ohashi, S. Tomura, K. Akaku, S. Hayashi, S.I. Wada, Characterization of synthetic imogolite nanotubes as gas storage. J. Mater. Sci. 39(5), 1799–1801 (2004)

    Article  CAS  Google Scholar 

  3. K. Yamamoto, H. Otsuka, A. Takahara, Preparation of novel polymer hybrids from imogolite nanofiber. Polym. J. 39(1), 1–15 (2007)

    Article  CAS  Google Scholar 

  4. A. Kuc, T. Heine, Shielding nanowires and nanotubes with imogolite: a route to nanocables. Adv. Mater. 21, 4353–4356 (2009)

    Article  CAS  Google Scholar 

  5. G.N.B. Baroña, M. Choi, B. Jung, High permeate flux of PVA/PSf thin film composite nanofiltration membrane with aluminosilicate single-walled nanotubes. J. Colloid Interface Sci. 386(1), 189–197 (2012)

    Article  Google Scholar 

  6. N. Yoshinaga, S. Aomine, Imogolite in some Ando soils. Soil Sci. Plant Nutrition. 8(3), 22–29 (1962)

    Article  Google Scholar 

  7. K.A. Wada, Structure scheme of soil allophane. Am. Miner. 52, 690–708 (1967)

    CAS  Google Scholar 

  8. K. Kajiwara, N. Donkai, Y. Fujiyoshi, H. Inagaki, Lyotropic mesophase of imogolite. Microscopic observation of imogolite mesophase. Makromol. Chem. 187(12), 2895–2907 (1986)

    Article  CAS  Google Scholar 

  9. P.D.G. Cradwick, V.C. Farmer, J.D. Rucell, C.R. Masson, K. Wada, N. Yoshinaga, Imogolite, a hydrated aluminium silicate of tubular structure. Nat. Phys. Sci. 240, 187–189 (1972)

    Article  CAS  Google Scholar 

  10. D.Y. Kang, J. Zang, E.R. Wright, A.L. McCanna, C.W. Jones, S. Nair, Dehydration, dehydroxylation, and rehydroxylation of single-walled aluminosilicate nanotubes. ACS Nano 4(8), 4897–4907 (2010)

    Article  CAS  Google Scholar 

  11. K.J. MacKenzie, M.E. Bowden, J.W.M. Brown, R.H. Meinhold, Structure and thermal transformations of imogolite studies by 29Si and 27A1 high-resolution solid-state nuclear magnetic resonance. Clays Clay Miner. 37(7), 317–324 (1989)

    Article  CAS  Google Scholar 

  12. N. Arancibia-Mirande, S. Lillo, M. Escudey, Nanotubular aluminosilicates : a case study for science and industry. J. Chil. Chem. Soc. 58(4), 2061–2066 (2013)

    Article  Google Scholar 

  13. C.M. Su, J.B. Harsh, The Electrophoretic mobility of imogolite and allophane in the presence of inorganic anions and citrate. Clays Clay Miner. 41(7), 461–471 (1993)

    CAS  Google Scholar 

  14. J.B. Harsh, S.J. Traina, J. Boyle, Y. Yang, Adsorption of cations on imogolite and their effect on surface charge characteristics. Clays Clay Miner. 40(6), 700–706 (1992)

    Article  CAS  Google Scholar 

  15. V.C. Farmer, M.J. Adams, A.R. Fraser, F. Palmieri, Synthetic imogolite: properties, synthesis, and possible applications. Clay Miner. 18, 459–472 (1983)

    Article  CAS  Google Scholar 

  16. W. Ma, W.O. Yah, H. Otsuka, A. Takahara, Surface functionalization of aluminosilicate nanotubes with organic molecules. Beilstein J. Nanotechnol. 3, 82–100 (2012)

    Article  Google Scholar 

  17. F. Alvarez-Ramirez, Theoretical Study of (OH)3N2O3MOH, M = C, Si, Ge, Sn and N = Al, Ga, In, with Imogolite-Like Structure. Comput. Theor. Nanosci. 6(5), 1120–1124 (2009)

    Article  CAS  Google Scholar 

  18. V.C. Farmer, A.R. Fraser, J.M. Tait, Synthesis of imogolite: a tubular aluminium silicate polymer. J. Chem. Soc. Chem. Commun. 13, 462–463 (1977)

    Article  Google Scholar 

  19. L. Denaix, Synthèse et propriétés d’aluminosilicates non lamellaires: l’imogolite et les allophanes, Ph.D. thesis, Paris 6 University, France (1993)

  20. S. Wada, K. Wada, Effects of substitution of germanium for silicon in imogolite. Clays Clay Miner. 30(2), 123–128 (1982)

    Article  CAS  Google Scholar 

  21. C. Levard et al., Synthesis of Large Quantities of Single-Walled Aluminogermanate Nanotube. J. Am. Chem. Soc. 130(18), 5862–5863 (2008)

    Article  CAS  Google Scholar 

  22. M. Ookawa, Y. Inoue, M. Watanabe, M. Suzuki, T. Yamaguchi, Synthesis and characterization of Fe containing imogolite. Clay Sci. 12(2), 280–284 (2006)

    CAS  Google Scholar 

  23. A. Thill et al., Evidence of double-walled Al–Ge imogolite-like nanotubes. A cryo-TEM and SAXS investigation. J. Am. Chem. Soc. 132(4), 1208–1209 (2010)

    Article  Google Scholar 

  24. S. Konduri, S. Mukherjee, S. Nair, Controlling nanotube dimensions: correlation between composition, diameter, and internal energy of single-walled mixed oxide nanotubes. ACS Nano 1(5), 393–402 (2007)

    Article  CAS  Google Scholar 

  25. T.G. Lamond, H. Marsh, The surface properties of carbon. II The effect of capillary condensation at low relative pressures upon the determination of surface area. Carbon 1(3), 281–292 (1964)

    Article  CAS  Google Scholar 

  26. J. Garrido, A. Linares-Solano, J.M. Mardn-Mardnez, M. Molina-Sabio, F. Rodriguez-Reinoso, R. Torregrosa, Use of N2 vs. CO2 in the characterization of activated carbons. Langmuir 3(1), 76–81 (1987)

    Article  CAS  Google Scholar 

  27. D. Lozano-Castello, D. Cazola-Amoros, A. Linares-Solano, Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons. Carbon 42(7), 1231–1236 (2004)

    Article  Google Scholar 

  28. F. Rodríguez-Reinoso, A. Linares-Solano, in Chemistry and Physics of Carbon, vol. 21, ed. by P. Thrower (Marcell Dekker Inc., New York, 1988)

    Google Scholar 

  29. D. Cazorla-Amorós, J. Alcañiz-Monge, A. Linares-Solano, Characterization of activated carbon fibers by CO2 adsorption. Langmuir 12(11), 2820–2824 (1996)

    Article  Google Scholar 

  30. S.J. Gregg, K.S.W. Sing, Adsorption, surface area and porosity, 2nd edn. (Academic Press, London, 1982)

    Google Scholar 

  31. CEREGE (Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement), French National Research Agency Report Nanomorph, ANR-2011-NANO-008 France

  32. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    Article  CAS  Google Scholar 

  33. M.M. Dubinin, H.F. Stoeckli, Homogeneous and heterogeneous micropore structures in carbonaceous adsorbents. J. Colloid Interface Sci. 75(1), 34–42 (1980)

    Article  CAS  Google Scholar 

  34. J. Medek, Possibility of micropore analysis of coal and coke from the carbon dioxide isotherm. Fuel 56(2), 131–133 (1977)

    Article  CAS  Google Scholar 

  35. S. Mukherjee, V.M. Bartlow, S. Nair, Phenomenology of the growth of single-walled aluminosilicate and aluminogermanate nanotubes of precise dimensions. Chem. Mater. 17(20), 4900–4909 (2005)

    Article  CAS  Google Scholar 

  36. K.M. Nikolaev, M.M. Dubinin, Concerning adsorptional properties of carbon adsorbents. Bull. Acad. Sci. USSR Div. Chem. 7(10), 1124–1133 (1958)

    Article  Google Scholar 

  37. CRC Handbook of Chemistry and Physics, 91st edn

  38. F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids: Principles, methodology and applications (Academic Press, London, 1999), pp. 170–179

    Google Scholar 

  39. K.S.W. Sing, D.H. Everette, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57(4), 603–619 (1985)

    Article  CAS  Google Scholar 

  40. B.C. Lippens, J.H. de Boer, Studies on pore systems in catalysts. V. The t Method. J. Catal. 4, 319–323 (1965)

    Article  CAS  Google Scholar 

  41. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances, I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373–380 (1951)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was done within the framework of the NANOMORPH Project (ANR-2011-NANO-008). The author gratefully acknowledges the French National Research Agency for financial support and CEREGE for synthesizing the imogolites for the NANOMORPH consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bizi, M. The structure and textural heterogeneity of single- and double-walled aluminogermanate imogolites. J Porous Mater 22, 1589–1597 (2015). https://doi.org/10.1007/s10934-015-0042-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0042-6

Keywords

Navigation