Skip to main content
Log in

The structure and property evaluation of electrospun porous fibrous membrane based on the copolymer of styrene and butyl acrylate

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The oils leaked into water seriously threaten human health, thus it is urgent for scientific researchers to treat the pollution caused by oils. In this work, poly (styrene-co-butyl acrylate)-based fibrous membranes which were able to absorb and separate oils from water were prepared via electrospinning. Their thermal properties and crystallization behaviors were characterized by thermogravimetric analyzer, differential scanning calorimetry, and X-ray diffractometer. Field emission scanning electron microscopy was employed to observe their pores, and a gravimetric method was adopted to calculate their porosity. Water contact angle in air and oil contact angle in water were used to describe the hydrophobicity of the prepared fibrous membranes. Finally, the fibrous membranes were applied to the fields of oils absorption and separation. The results showed that the absorbencies of the fibrous membranes for unmoving pure oil were higher than 50 g/g, and the maximum absorbency even reached 91 g/g; additionally, the fibrous membranes also absorbed moving oil from the mixture of oil and water. The floating oil was completely separated from water by the used fibrous membrane after separation apparatus ran for 100 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.A. Lin, H. Yang, C. Petit, F. Hsu, Chem. Eng. J. 249, 293 (2014)

    Article  CAS  Google Scholar 

  2. E.N. Frankel, S.W. Huang, R. Aeschbach, E. Prior, J. Agric. Food Chem. 44, 131 (1996)

    Article  CAS  Google Scholar 

  3. U. Klinkesorn, P. Sophanodora, P. Chinachoti, D.J. McClements, Food Res. Int. 37, 851 (2004)

    Article  CAS  Google Scholar 

  4. M. Kobya, C. Ciftci, M. Bayramoglu, M.T. Sensoy, Sep. Purif. Technol. 60, 285 (2008)

    Article  CAS  Google Scholar 

  5. S. Banerjee, M. Joshi, R. Jayaram, Chemosphere 64, 1026 (2006)

    Article  CAS  Google Scholar 

  6. A.A. Al-Majed, A.R. Adebayo, M.E. Hossain, J. Environ. Manage. 113, 213 (2012)

    Article  Google Scholar 

  7. Q. Zhu, Q. Pan, F. Liu, J. Phys. Chem. C 115, 17464 (2011)

    Article  CAS  Google Scholar 

  8. C. Teas, S. Kalligeros, F. Zanikos, S. Stournas, E. Lois, G. Anastopoulos, Desalination 140, 259 (2001)

    Article  CAS  Google Scholar 

  9. A. Rotaru, C. Cojocaru, I. Cretescu, M. Pinteala, D. Timpu, L. Sacarescu, V. Harabagiu, Sep. Purif. Technol. 133, 260 (2014)

    Article  CAS  Google Scholar 

  10. Y. Feng, C. Xiao, J. Appl. Polym. Sci. 101, 1248 (2006)

    Article  CAS  Google Scholar 

  11. N. Xu, C. Xiao, Y. Feng, Polym. Plast. Technol. 48, 716 (2009)

    Article  CAS  Google Scholar 

  12. J. Zhao, C. Xiao, N. Xu, Int. J. Polym. Anal. Chem. 8, 557 (2012)

    Article  Google Scholar 

  13. T. Lim, X. Huang, Chemosphere 66, 955 (2007)

    Article  CAS  Google Scholar 

  14. J. Mo, N. Xu, C. Xiao, X. Han, Y. Liu, J. Mater. Sci. 49, 4816 (2014)

    Article  CAS  Google Scholar 

  15. H. Liu, C. Cao, F. Wei, P. Huang, Y. Sun, L. Jiang, W. Song, J. Mater. Chem. A 2, 3557 (2014)

    Article  CAS  Google Scholar 

  16. M.H. Tai, P. Gao, B.Y.L. Tan, D.D. Sun, J.O. Leckie, A.C.S. Appl, Mater. Inter. 6, 9393 (2014)

    Article  CAS  Google Scholar 

  17. Q. Liu, A.A. Patel, L. Liu, A.C.S. Appl, Mater. Inter. 6, 8996 (2014)

    Article  CAS  Google Scholar 

  18. J. Lin, Y. Shang, B. Ding, J. Yang, J. Yu, S.S. Al-Deyab, Mar. Pollut. Bull. 64, 347 (2012)

    Article  CAS  Google Scholar 

  19. Y. Liu, M. Zhou, J. Polym. Eng. 28, 43 (2008)

    Google Scholar 

  20. Y. Si, Q. Fu, X. Wang, J. Zhu, J. Yu, G. Sun, B. Ding, ACS Nano 9, 3791 (2015)

    Article  CAS  Google Scholar 

  21. J. Lin, B. Ding, J. Yang, J. Yu, G. Sun, Nanoscale 4, 176 (2012)

    Article  CAS  Google Scholar 

  22. J. Lin, F. Tian, Y. Shang, F. Wang, B. Ding, J. Yu, Z. Guo, Nanoscale 5, 2745 (2013)

    Article  CAS  Google Scholar 

  23. J. Wu, N. Wang, L. Wang, H. Dong, Y. Zhao, L. Jiang, ACS Appl. Mater. Inter. 4, 3207 (2012)

    Article  CAS  Google Scholar 

  24. S. Xu, L. Zhang, Y. Lin, R. Li, F. Zhang, J. Phys. Chem. Solids 73, 1514 (2012)

    Article  CAS  Google Scholar 

  25. D. Gromadzki, J. Lokaj, P. Černoch, O. Diat, F. Nallet, P. Štěpánek, Eur. Polym. J. 44, 189 (2008)

    Article  CAS  Google Scholar 

  26. V.K. Konaganti, G. Madras, Ind. Eng. Chem. Res. 48, 1712 (2009)

    Article  CAS  Google Scholar 

  27. J.P. Mahalik, G. Madras, Ind. Eng. Chem. Res. 44, 4171 (2005)

    Article  CAS  Google Scholar 

  28. Y. Hua, C. Chena, C. Wang, Polym. Degrad. Stabil. 84, 505 (2004)

    Article  Google Scholar 

  29. S. Duquesne, J. Lefebvre, R. Delobel, G. Camino, M. LeBras, G. Seeley, Polym. Degrad. Stabil. 83, 19 (2004)

    Article  CAS  Google Scholar 

  30. M. Fernández-Garćia, J.L. Fuente, M.L. Cerrada, E.L. Madruga, Polymer 43, 3173 (2002)

    Article  Google Scholar 

  31. N.M. Ahmad, F. Heatley, P.A. Lovell, Macromolecules 31, 2822 (1998)

    Article  CAS  Google Scholar 

  32. H. Kaczmarek, A. Felczak, A. Szalla, Polym. Degrad. Stabil. 93, 1259 (2008)

    Article  CAS  Google Scholar 

  33. L. Qiu, W. Chen, B. Qu, Polym. Degrad. Stabil. 87, 433 (2005)

    Article  CAS  Google Scholar 

  34. B.A. Bhanvasea, D.V. Pinjari, P.R. Gogate, S.H. Sonawane, A.B. Pandit, Chem. Eng. J. 181, 770 (2012)

    Article  Google Scholar 

  35. L.J. Borthakur, D. Das, S.K. Dolui, Mater. Chem. Phys. 124, 1182 (2010)

    Article  CAS  Google Scholar 

  36. D.J. Kang, K. Pala, S.J. Park, D.S. Bang, J.K. Kim, Mater. Design 31, 2216 (2010)

    Article  CAS  Google Scholar 

  37. P. Singh, A.K. Ghosh, Mater. Design 55, 137 (2014)

    Article  CAS  Google Scholar 

  38. F. Leroux, L. Meddar, B. Mailhot, S. Morlat-Therias, J.L. Gardette, Polymer 46, 3571 (2005)

    Article  CAS  Google Scholar 

  39. F.M. Rabagliati, R.A. Cancino, A.M. Ilarduya, S. Munoz-Guerra, Eur. Polym. J. 41, 1013 (2005)

    Article  CAS  Google Scholar 

  40. K.L. Ngai, T.R. Gopalakrishnan, M. Beiner, Polymer 47, 7222 (2006)

    Article  CAS  Google Scholar 

  41. A.Y. Malkin, A. Arinstein, V.G. Kulichikhin, Prog. Polym. Sci. 39, 959 (2014)

    Article  CAS  Google Scholar 

  42. H. Liu, C. Xiao, X. Hu, M. Liu, J. Membrane Sci. 427, 326 (2013)

    Article  CAS  Google Scholar 

  43. L. Han, Z. Xu, Y. Cao, Y. Wei, H. Xu, J. Membrane Sci. 427, 154 (2013)

    Google Scholar 

  44. Y. Bai, Z. Huang, F. Kang, Carbon 66, 705 (2014)

    Article  CAS  Google Scholar 

  45. M. Bemett, W. Zisman, J. Phys. Chem. 63, 1241 (1959)

    Article  Google Scholar 

  46. M.W. Lee, S. An, S.S. Latthe, C. Lee, S. Hong, S.S. Yoon, A.C.S. Appl, Mater. Inter. 5, 10597 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jipeng Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, N., Cao, J. & Lu, Y. The structure and property evaluation of electrospun porous fibrous membrane based on the copolymer of styrene and butyl acrylate. J Porous Mater 22, 1539–1548 (2015). https://doi.org/10.1007/s10934-015-0036-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0036-4

Keywords

Navigation