Journal of Porous Materials

, Volume 21, Issue 6, pp 1159–1167 | Cite as

Self-assembly of porous Cu structures during steady-state condensation of weakly supersaturated vapors

  • V. I. Perekrestov
  • Yu. O. Kosminska
  • A. S. Kornyushchenko
  • V. M. Latyshev
Article

Abstract

A new technological approach to the porous layers formation with various structural and morphological forms has been developed on the example of copper. It is based on a copper magnetron sputtering in high-purity argon under near-equilibrium conditions. It has been established that the layers geometrical characteristics can be effectively controlled by varying the discharge power, the deposition temperature, and the negative bias applied to the growth surface. The low supersaturation serves as a prerequisite for the porosity formation and causes the cyclically repeated processes of nucleation on active centers, incomplete intergrowth of the structural fragments and new active centers formation. When the negative bias is applied to the growth surface, the growing crystals are elongated, weakly bound with each other and oriented strictly perpendicularly to the substrate surface.

Keywords

Cu porous structures Magnetron sputtering Low supersaturation Structure formation 

References

  1. 1.
    A.K.M. Kafi et al., Biosens. Bioelectron. 25, 2458 (2010)CrossRefGoogle Scholar
  2. 2.
    N. Wang et al., Biomaterials 34, 888 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Abburi, N. Abrams, W.J. Yeh, J. Porous Mater. 19, 543 (2012)CrossRefGoogle Scholar
  4. 4.
    S.A.G. Evans et al., Anal. Chem. 6, 1322 (2002)CrossRefGoogle Scholar
  5. 5.
    V. Bansal et al., Adv. Mater. 20, 717 (2008)CrossRefGoogle Scholar
  6. 6.
    Zh-T Liu, X. Li, Zh-W Liu, J. Lu, Powder Technol. 189, 514 (2009)CrossRefGoogle Scholar
  7. 7.
    Y. Liang, P. Wang, H.B. Dai, J. Alloys. Compd. 491, 359 (2010)CrossRefGoogle Scholar
  8. 8.
    O.V. Shulga et al., Chem. Mat. 19, 3902 (2007)CrossRefGoogle Scholar
  9. 9.
    X. Tao et al., Chem. Commun. 49, 4513 (2013)CrossRefGoogle Scholar
  10. 10.
    C. Yang et al., J. Power Sources 196, 10673 (2011)CrossRefGoogle Scholar
  11. 11.
    W. Yuan et al., Appl. Energy 94, 309 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Li, Y. Zhou, H. Geng, J. Porous Mater. 19, 791 (2012)CrossRefGoogle Scholar
  13. 13.
    H.B. Lu, Y. Li, F.H. Wang, Scripta Mater. 56, 165 (2007)CrossRefGoogle Scholar
  14. 14.
    D.V. Pugh, A. Dursun, S.G. Corcoran, J. Electrochem. Soc. 152, B455 (2005)CrossRefGoogle Scholar
  15. 15.
    Y. Ding, J. Erlebacher, J. Am. Chem. Soc. 125, 7772 (2003)CrossRefGoogle Scholar
  16. 16.
    J.F. Huang, I.W. Sun, Adv. Funct. Mater. 15, 989 (2005)CrossRefGoogle Scholar
  17. 17.
    A.J. Smith, D.L. Trimm, Annu. Rev. Mater. Res. 35, 127 (2005)CrossRefGoogle Scholar
  18. 18.
    K.M. Kulinowski et al., Adv. Mater. 12, 833 (2000)CrossRefGoogle Scholar
  19. 19.
    A. Walcarius, Chem. Soc. Rev. 42, 4098 (2013)CrossRefGoogle Scholar
  20. 20.
    V.I. Perekrestov, A.S. Kornyushchenko, V.V. Natalich, Solid State Sci. 33, 12 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Zhang, C.M. Li, Chem. Soc. Rev. 41, 7016 (2012)CrossRefGoogle Scholar
  22. 22.
    Y. Ding, Z. Zhang, in Springer Handbook of Nanomaterials, ed. by R. Vajtai (Springer, Berlin-Heidelberg, 2013), p. 779CrossRefGoogle Scholar
  23. 23.
    V.I. Perekrestov, YuO Kosminska, A.A. Mokrenko, I.N. Kononenko, A.S. Kornyushchenko, Vacuum 86, 111 (2011)CrossRefGoogle Scholar
  24. 24.
    V.I. Perekrestov, A.I. Olemskoi, YuO Kosminska, A.A. Mokrenko, Phys. Lett. A 373, 3386 (2009)CrossRefGoogle Scholar
  25. 25.
    V.I. Perekrestov, A.I. Olemskoi, A.S. Kornyushchenko, YuA Kosminskaya, Phys. Solid State 51, 1060 (2009)CrossRefGoogle Scholar
  26. 26.
    YuO Kosminska, A.A. Mokrenko, V.I. Perekrestov, Tech. Phys. Lett. 37, 538 (2011)CrossRefGoogle Scholar
  27. 27.
    V.I. Perekrestov, YuO Kosminska, A.S. Kornyushchenko, A.A. Mokrenko, J. Porous Mater. 20, 967 (2013)CrossRefGoogle Scholar
  28. 28.
    V.I. Perekrestov, YuO Kosminska, A.S. Kornyushchenko, V.M. Latyshev, Phys. B 411, 140 (2013)CrossRefGoogle Scholar
  29. 29.
    V.I. Perekrestov, A.S. Kornyushchenko, YuA Kosminskaya, JETP Lett. 86, 767 (2007)CrossRefGoogle Scholar
  30. 30.
    G. Perny, B. Laville-Saint-Martin, J. Phys.-Paris 25, 993 (1964)CrossRefGoogle Scholar
  31. 31.
    B.L. Saint Martin et al., Rev. Phys. Appl. 1, 230 (1966)CrossRefGoogle Scholar
  32. 32.
    V.I. Perekrestov, S.N. Kravchenko, Instrum. Exp. Tech. 45, 404 (2002)CrossRefGoogle Scholar
  33. 33.
    A. A. Chernov et al., in Modern Crystallography, vol. 3, ed. by B. K. Vainstein, A. A. Chernov, and L. A. Shuvalov (Nauka, Moscow, 1980), p. 7 (in Russian)Google Scholar
  34. 34.
    R. Glang, in Handbook of Thin Film Technology, vol. 1, ed. by L. Maissel, R. Glang (McGrawHill Hook Company, New York, 1970), p. 9Google Scholar
  35. 35.
    B.S. Danylyn, Use of Low-Temperature Plasma to Deposit Thin Films (Energoatomizdat, Moscow, 1989). (in Russian)Google Scholar
  36. 36.
    K.S. Sree Harsha, Principles of Vapor Deposition of Thin Films (Elsevier, Amsterdam, 2006), p. 587Google Scholar
  37. 37.
    S.M. Rossnagel, in Handbook of Plasma Processing Technology: Fundamentals, Etching, Deposition, and Surface Interactions, ed. by S.M. Rossnagel, J.J. Cuomo, W.D. Westwood (Noyes Publications, New Jersey, 1990), p. 160Google Scholar
  38. 38.
    A.A. Mokrenko, V.I. Perekrestov, YuO Kosminska, J. Nano-Electron. Phys. 2, 40 (2010). (in Russian)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. I. Perekrestov
    • 1
  • Yu. O. Kosminska
    • 1
  • A. S. Kornyushchenko
    • 1
  • V. M. Latyshev
    • 1
  1. 1.Sumy State UniversitySumyUkraine

Personalised recommendations