Experimental investigation of pressure-drop characteristics across multi-layer porous metal structures

Abstract

This study investigates the effect of airflow (in the range of 0–70 m s−1) on the pressure-drop characteristics for a novel multi-layered, nickel-based porous metal, as a function of thickness (affected by sectioning) and density (affected by compression). In addition to generating unique data for these materials, the study highlights the need for precise pinpointing of the different flow regimes (Darcy, Forchheimer and Turbulent) in order to enable accurate determination of the permeability (K) and form drag coefficient (C) defined by the Forchheimer equation and to understand the complex dependence of length-normalised pressure drop on sample thickness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    H. Choe, D. Dunand, Mater. Sci. Eng., A 384, 184–193 (2004)

    Article  Google Scholar 

  2. 2.

    N. Dukhan, Exp. Fluids 41, 4665–4672 (2006)

    Article  Google Scholar 

  3. 3.

    E. Baril, A. Mostafid, L.P. Lefebvre, M. Medraj, Adv. Eng. Mater. 10, 889–894 (2008)

    CAS  Article  Google Scholar 

  4. 4.

    N. Dukhan, Metal Foams: Fundamentals and Applications (Destech Publications, Lancaster, 2013), pp. 31–45

    Google Scholar 

  5. 5.

    D. Ingham, I. Pop, Transport Phenomena in Porous Media, 1st edn. (Elsevier Science, Oxford, 1998)

    Google Scholar 

  6. 6.

    J.-F. Despois, A. Mortensen, Acta Mater. 53, 1381–1388 (2005)

    CAS  Article  Google Scholar 

  7. 7.

    S. Ergun, A. Orning, Ind. Eng. Chem. 41, 1179–1184 (1949)

    CAS  Article  Google Scholar 

  8. 8.

    N. Dukhan, P. Patel, Exp. Therm. Fluid Sci. 32, 1059–1067 (2008)

    CAS  Article  Google Scholar 

  9. 9.

    P. Khayargoli, V. Loya, L.P. Lefebvre, M. Medraj, Presented at the CSME Forum (Can. Soc. Mech. Eng., Ontario, 2004)

    Google Scholar 

  10. 10.

    F. Topin, J. Bonnet, L. Tadrist, Presented at the 4th international conference on porous metals and metal foaming technology (Kyoto international conference hall, Kyoto, Japan 2005)

  11. 11.

    S. Ergun, Chem. Eng. Prog. 48, 89–93 (1952)

    CAS  Google Scholar 

  12. 12.

    N. Dukhan, C. Minjeur II, J. Porous Mater. 18, 417–424 (2011)

    CAS  Article  Google Scholar 

  13. 13.

    H. Rootare, C. Prenzlow, J. Phys. Chem. 71, 2733–2736 (1967)

    CAS  Article  Google Scholar 

  14. 14.

    Application note 154; The masurement of pharmaceutical binders using TriStar II krypton option (M.I. Corporation web, 2009), http://www.micromeritics.com/Library/Application-Notes.aspx. Accessed 26 Feb 2014

  15. 15.

    M. Gerber et al., J. Sandw. Struct. Mater. 14, 181–196 (2012)

    CAS  Article  Google Scholar 

  16. 16.

    M. Medraj, E. Baril, V. Loya, L.P. Lefebvre, J. Mater. Sci. 42, 4372–4383 (2007)

    CAS  Article  Google Scholar 

  17. 17.

    S. Mancin, C. Zilio, A. Cavallini, L. Rossetto, Int. J. Heat Mass Transf. 53, 3121–3130 (2010)

    Article  Google Scholar 

  18. 18.

    K. Boomsma, D. Poulikakos, ASME J. Fluids Eng. 124, 263–272 (2002)

    CAS  Article  Google Scholar 

  19. 19.

    C.Y. Zhao, T.Kim, T.J. Lu, H.P. Hodson, Thermal transport phenomena in Porvair metal foams and sintered beds. (Fuel Cell Markets web,2001), http://www.fuelcellmarkets.com/fuel_cell_markets/1,1,1.html. Accessed 26 Mar 2013

  20. 20.

    N. Dukhan, M. Ali, Presented at the 7th international conference on porous metals and metallic foams (BEXCO, Busan, Korea 2011)

  21. 21.

    O. Gerbaux, T. Vercueil, A. Memponteil, B. Bador, Chem. Eng. Sci. 64, 4186–4195 (2009)

    CAS  Article  Google Scholar 

  22. 22.

    N. Dukhan, K. Patel, Presented at the 3rd international conference on porous media and its applications in science, engineering and industry (The II Ciocco Hotal and conference centre, Tuscany, Italy, 2010)

  23. 23.

    N. Dukhan, M. Ali, Int. J. Therm. Sci. 57, 85–91 (2012)

    CAS  Article  Google Scholar 

  24. 24.

    A. Mostafid, entrance and exit effects on flow through metallic foam. (Concordia University, Montreal 2007), http://users.encs.concordia.ca. Accessed 4 Mar 2014

Download references

Ethical standards

I declare that the experiments in the manuscript submitted comply with the current laws of the United Kingdom.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hatem Oun.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oun, H., Kennedy, A. Experimental investigation of pressure-drop characteristics across multi-layer porous metal structures. J Porous Mater 21, 1133–1141 (2014). https://doi.org/10.1007/s10934-014-9863-y

Download citation

Keywords

  • Multi-layer porous structure
  • High air-velocity
  • Ergun equation
  • Thickness effect
  • Regime transition