Skip to main content
Log in

Conventional and microwave-heated oxygen pulsing techniques on metal-doped activated carbons

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Conventional and microwave-heated oxygen pulsing techniques on metal-doped activated carbons to achieve a controlled meso/micropore structure were investigated. The gas pulsing experiments consisted of repeated cycles. Each cycle consists of an oxidising stage, under O2/Ar atmosphere and constant temperature, and a burn-off stage, under N2 atmosphere at variable temperature (heating and cooling). The porosity of the carbons was analysed by nitrogen adsorption at −196 °C. Two different activated carbons, Cu-doped BPL (BPL-Cu) and ASC, were used as raw materials. The commercial activated carbon ASC showed higher reactivity towards O2, due to the catalytic effect of the metals (mainly, Cu and Cr) that are on the carbon surface and their better dispersion. After several pulses, ASC underwent a moderate increase in the micropore volume and a significant increase in mesopore volume. BPL-Cu showed a higher increase in microporosity than mesoporosity, giving rise to a meso/micropore volume ratio lower than that of the original BPL-Cu. Oxygen pulsing technique was carried out in a conventional furnace and in a microwave oven. Conventional and microwave-heated oxygen pulsing on ASC yielded similar textural development. However, the time required under microwave heating was remarkably reduced respect to conventional heating (around 2.5 times less), which suggests that microwave-heated oxygen pulsing technique would be an interesting alternative to conventional activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.M. Mak, B.T. Tey, K.Y. Cheah, W.L. Siew, K.K. Tan, Adsorp. 15, 507 (2009)

    Article  CAS  Google Scholar 

  2. T. Kyotani, Carbon. 38, 269 (2000)

    Article  CAS  Google Scholar 

  3. F.V.S. Lopes, C.A. Grande, A.M. Ribeiro, E.L. Oliveira, J.M. Loureiro, A.E. Rodrigues, Ind. Eng. Chem. Res. 48, 3978 (2009)

    Article  CAS  Google Scholar 

  4. L. Zubizarreta, A. Arenillas, J.J. Pis, Int. J. Hydrogen Energy. 34, 4575 (2009)

    Article  CAS  Google Scholar 

  5. H.M. Williams, E.A. Dawson, P.A. Barnes, G.M.B. Parkes, L.A. Pears, C.J. Hindmarsh, J. Porous. Mater. 16, 557 (2009)

    Article  CAS  Google Scholar 

  6. K.M. Smith, G.D. Fowler, S. Pullket, N.J.D. Graham, Water. Res. 43, 2569 (2009)

    Article  CAS  Google Scholar 

  7. P. Galiatsatou, M. Metaxas, D. Arapoglou, V. Kasselouri-Rigopoulou, Waste. Manag. 22, 803 (2002)

    Article  CAS  Google Scholar 

  8. C. Liu, Z. Tang, Y. Chen, S. Su, W. Jiang, Bioresour. Technol. 101, 1097 (2010)

    Article  CAS  Google Scholar 

  9. H. Deng, G. Li, H. Yang, J. Tang, J. Tang, Chem. Eng. J. 163, 373 (2010)

    Article  CAS  Google Scholar 

  10. S.B. Lyubchick, R. Benoit, F. Beguin, Carbon. 40, 1287 (2002)

    Article  Google Scholar 

  11. X. Py, A. Guillot, B. Cagnon, Carbon. 41, 1533 (2003)

    Article  CAS  Google Scholar 

  12. P. Gonzalez-Vilchez, A. Linares-Soto, J.D. Lopez-Gonzalez, F. Rodriguez-Reinoso, Carbon. 17, 41 (1979)

    Article  Google Scholar 

  13. D.F. Quinn, J.A. Holland, US patent 5071820 (1991)

  14. G. Bezzon, C.A. Luengo, G. Capobianco, Extended Abstracts Eurocarbon (Strasburg., GFEC, 1998), p. 349

    Google Scholar 

  15. B. Cagnon, X. Py, A. Guillot, J.P. Joly, R. Berjoan, Micropor. Mesopor. Mat. 80, 183 (2005)

    Article  CAS  Google Scholar 

  16. J.A. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernández, L. Zubizarreta, E.G. Calvo, J.M. Bermúdez, Fuel. Process. Technol. 91, 1 (2010)

    Article  Google Scholar 

  17. B. Fidalgo, A. Domínguez, J.J. Pis, J.A. Menéndez, Int. J. Hydrogen Energy. 33, 4337 (2008)

    Article  CAS  Google Scholar 

  18. K.E. Haque, Int. J. Miner. Process. 57, 1 (1999)

    Article  CAS  Google Scholar 

  19. E.T. Thostenson, T.-W. Chou, Compos. A. 30, 1055 (1999)

    Article  Google Scholar 

  20. H. Will, P. Scholz, B. Ondruschka, Chem. Eng. Technol. 27, 113 (2004)

    Article  CAS  Google Scholar 

  21. X. Zhang, D.O. Hayward, Inorg. Chim. Acta. 359, 3421 (2006)

    Article  CAS  Google Scholar 

  22. J. Jacob, L.H.L. Chia, F.C.Y. Boey, J. Mater. Sci. 30, 5321 (1995)

    Article  CAS  Google Scholar 

  23. B. Fidalgo, L. Zubizarreta, J.M. Bermúdez, A. Arenillas, J.A. Menéndez, Fuel. Process. Technol. 91, 765 (2010)

    Article  CAS  Google Scholar 

  24. R.G. Grabenstetter, F.E. Blacet, Summary Tech. Report of Division 10 (NDRC, Washington DC, 1946), p. 40

  25. M. Molina-Sabio, V. Perez, F. Rodriguez-Reinoso, Carbon. 32, 1259 (1994)

    Article  CAS  Google Scholar 

  26. J.B. Parra, J.C. de Sousa, R.C. Bansal, J.J. Pis, J.A. Pajares, Adsorp. Sci. Technol. 12, 51 (1995)

    CAS  Google Scholar 

  27. F. Rodríguez-Reinoso, Y. Nakagawa, J. Silvestre-Albero, J.M. Juárez-Galán, M. Molina-Sabio, Micropor. Mesopor. Mat. 115, 603 (2008)

    Article  Google Scholar 

  28. E.A. Dawson, G.M.B. Parkes, P.A. Barnes, M.J. Chinn, Carbon. 41, 571 (2003)

    Article  CAS  Google Scholar 

  29. M.M. Dubinin, Chem. Rev. 60, 235 (1960)

    Article  CAS  Google Scholar 

  30. E.P. Barrett, L.J. Joyner, P.H. Halenda, J. Am. Chem. Soc. 73, 373 (1951)

    Article  CAS  Google Scholar 

  31. G.M.B. Parkes, P.A. Barnes, E.L. Charsley, G. Bond, J. Therm. Anal. Calorim. 56, 723 (1999)

    Article  CAS  Google Scholar 

  32. D.W. McKee, Carbon. 8, 131 (1970)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B.F. is grateful for the support received from the CSIC I3P Programme co-financed by the European Social Fund (ESF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Fidalgo or G. M. B. Parkes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fidalgo, B., Williams, H.M., Dawson, E.A. et al. Conventional and microwave-heated oxygen pulsing techniques on metal-doped activated carbons. J Porous Mater 21, 81–89 (2014). https://doi.org/10.1007/s10934-013-9750-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-013-9750-y

Keywords

Navigation